PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2014 | 12 | 8 | 868-876
Article title

Cultivating conditions optimization of the anaerobic digestion of corn ethanol distillery residuals using response surface methodology

Content
Title variants
Languages of publication
EN
Abstracts
EN
This study investigated the individual and interactive effects of three factors - temperature, inoculum/substrate ratio (ISR) and inoculum typology - on the anaerobic digestion of corn ethanol distillery wastewater. Biochemical methane potential assays planned with factorial design with two independent quantitative variables on three levels (ISR: 1:1, 2:1 and 3:1; temperature: 30°C, 33.5°C, 37°C) and one independent qualitative variable (inoculum type: suspended, granular, mixed) have been performed. Response Surface Methodology has been used to study the effect of the factors with the aim of maximizing the specific methane yields (YCH4) obtainable with this substrate. The results show that all three investigated factors influence in a significant matter the YCH4, the ISR having the strongest effect on it. The temperature has significant influence on the YCH4 only in combination with high ISR values. The optimal conditions for the maximum YCH4 (551 mL CH4 g−1 VSadded) have been found at 37°C operating temperature, ISR=3:1 and using granular inoculum. These conditions gave rise to a 4-fold increase of YCH4 with respect to the worst combination of factors (YCH4=129 mL g−1 VSadded for the suspended inoculum type, at 30°C and ISR=1:1). The results improve the knowledge on the digestion of this substrate, providing information for successful process up-scaling.
Publisher
Journal
Year
Volume
12
Issue
8
Pages
868-876
Physical description
Dates
published
1 - 8 - 2014
online
1 - 5 - 2014
References
  • [1] S.H. Schaefer, S. Sung, Water Environ. Res. 80, 101 (2008) http://dx.doi.org/10.2175/106143007X212157[Crossref]
  • [2] K. Liu, K.A. Rosentrater, Distillers Grains. Production, Properties and Utilization (CRC Press, Boca Raton, 2012)
  • [3] B.A. Babcock, J.F. Fabiosa, CARD Policy Brief 11, 1 (2011)
  • [4] M. Krzywonos, E. Cibis, T. Miskiewicz, A. Ryznar-Luty, Electron. J. Biotechn. 12 (2009)
  • [5] C. Eskicioglu, K. Kennedy, J. Marin, B. Strehler, Bioresource Technol. 102, 1079 (2011) http://dx.doi.org/10.1016/j.biortech.2010.08.061[Crossref]
  • [6] M. Agler, M. Garcia, E. Lee, M. Schliche, L. Angenent, Environ. Sci. Technol. 42, 6723 (2008) http://dx.doi.org/10.1021/es800671a[Crossref]
  • [7] S.A. Shojaosadati, H.R. Sanaei, S.M. Fatemi, J. Chem. Technol. Biot. 67, 362 (1996) http://dx.doi.org/10.1002/(SICI)1097-4660(199612)67:4<362::AID-JCTB513>3.0.CO;2-C[Crossref]
  • [8] A.C. Wilkie, K.J. Riedesel, J.M. Owens, Biomass. Bioenerg. 19, 63 (2000) http://dx.doi.org/10.1016/S0961-9534(00)00017-9[Crossref]
  • [9] T. Abbasi, S.M. Tauseef, S.A. Abbasi, Biogas Energy (Springer, New York, 2012) http://dx.doi.org/10.1007/978-1-4614-1040-9[Crossref]
  • [10] G.K. Anderson, P.J. Sallis, S. Ujanik, In: D. Mara, N.J. Horan (Eds.), Handbook of water and wastewater microbiology (Academic press, San Diego, 2003)
  • [11] L. Gyenge, B. Raduly, R. Barrena, X. Font, Sz. Lanyi, B. Abraham, Energy (IYCE) 1 (2013)
  • [12] C. Eskicioglu, M. Ghorbani, Process Biochem. 46, 1682 (2011) http://dx.doi.org/10.1016/j.procbio.2011.04.013[Crossref]
  • [13] D. Hawkes, R. Horton, In: G. Milazzo (Ed.), Energetics and Technology of Biological Elimination of Wastes (Elsevier, New York, Amsterdam, 1981) 131
  • [14] R. Alvarez, G. Liden, Bioresource Technol. 99, 7278 (2008) http://dx.doi.org/10.1016/j.biortech.2007.12.055[Crossref]
  • [15] W. Choorit, P. Wisarnwan, Electron. J. Biotechn. 10, 376 (2007)
  • [16] K.J. Chae, Am Jang, S.K. Yim, In S. Kim, Bioresource Technol. 99, 1 (2008) http://dx.doi.org/10.1016/j.biortech.2006.11.063[Crossref]
  • [17] S.J. Kalil, F. Maugeri, M.I. Rodrigues, Process Biochem. 35, 539 (2000) http://dx.doi.org/10.1016/S0032-9592(99)00101-6[Crossref]
  • [18] P. Barghini, D. Moscatelli, A.M.V. Garzillo, S. Crognale, M. Fenice, Enzyme Microb. Tech. 53, 331 (2013) http://dx.doi.org/10.1016/j.enzmictec.2013.07.005[Crossref]
  • [19] X. Wang, G. Yang, Y. Feng, G. Ren, X. Han, Bioresource Technol. 120, 78 (2012) http://dx.doi.org/10.1016/j.biortech.2012.06.058[Crossref]
  • [20] M.J. Han, S.K. Behera, H.S. Park, J. Chem. Technol. Biot. 87, 1541 (2012) http://dx.doi.org/10.1002/jctb.3786[Crossref]
  • [21] C. Gonzalez-Fernandez, B. Molinuevo-Salces, M.C. Garcia-Gonzalez, Appl. Energ. 88, 3448 (2011) http://dx.doi.org/10.1016/j.apenergy.2010.12.035[Crossref]
  • [22] L.S. Clesceri, A.E. Greenberg, A.D. Eaton (Eds.), Standard Methods for the Examination of Water and Wastewater, 20th edition (APHA, Washington D.C., 1999) [WoS]
  • [23] M. Walker, Y. Zhang, S. Heaven, C. Banks, Bioresource Technol. 100, 6339 (2009) http://dx.doi.org/10.1016/j.biortech.2009.07.018[Crossref]
  • [24] K.S.B. Kameswari, C. Kalyanaraman, S. Porselvam, K. Thanasekaran, Clean. Technol. Envir. 14, 241 (2012) http://dx.doi.org/10.1007/s10098-011-0391-z[Crossref]
  • [25] F. Raposo, R. Borja, M.A. Martin, A. Martin, M.A. De la Rubia, B. Rincon, Chem. Eng. J. 149, 70 (2009) http://dx.doi.org/10.1016/j.cej.2008.10.001[Crossref]
  • [26] W. Wu-haan, MSc thesis (Iowa State University, Ames, USA, 2008)
  • [27] M.A. Pereira, O.C. Pires, M. Mota, M.M. Alves, Water Sci. Technol. 45, 139 (2005)
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11532-014-0542-2
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.