Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 12 | 7 | 796-803

Article title

In vitro hemocompatibility and corrosion behavior of new Zr-binary alloys in whole human blood

Content

Title variants

Languages of publication

EN

Abstracts

EN
The aim of this study is to evaluate the accuracy of three binary alloys’ composition, and their biocompatibility. Depending on the intended use of the medical devices made from these materials, dynamic or static tests should be performed. We have chosen static tests as we thought they may be used as knee or hip replacement, and not as cardiac valves.Three binary alloys ( Zr10Nb, Zr2.5Nb and Zr12Ta) were obtained from high purity powders (>99.9%), using an induction furnace first, and an electric arc furnace for a perfect homogenization. Their final composition was verified with a XRF analyzer-INNOV-X.Hemolysis tests can determine the degree of red blood cells lysis and the release of hemoglobin. The released hemoglobin quantity was extremely small, under 2%, in all cases, and the coagulation tests showed no risk for thrombosis. The electrochemical behavior was also studied in biological fluid, human female serum, and showed a low corrosion rate.The obtained alloys do not cause hemolysis, so they are hemocompatible with all blood types.

Publisher

Journal

Year

Volume

12

Issue

7

Pages

796-803

Physical description

Dates

published
1 - 7 - 2014
online
30 - 4 - 2014

Contributors

  • University Politehnica of Bucharest
  • University Politehnica of Bucharest
  • University Politehnica of Bucharest
  • University Titu Maiorescu

References

  • [1] S. Krajewski & al., Acta Biomater. 9, 7460 (2013) http://dx.doi.org/10.1016/j.actbio.2013.03.016[Crossref]
  • [2] A. Gomez Sanchez, W. Schreiner, G. Duffóc, S. Ceré, Appl. Surf. Sci. 257, 6397 (2011) http://dx.doi.org/10.1016/j.apsusc.2011.02.005[Crossref]
  • [3] ISO 10993-4:2002/Amd 1:2006 Biological evaluation of medical devices Part 4: Selection of tests for interactions with blond (International Organization for Standardization, Geneva, Switzerland, 2009)
  • [4] S. Logothetidis, Diamond Relat. Mater. 16, 1847 (2007) http://dx.doi.org/10.1016/j.diamond.2007.05.012[Crossref]
  • [5] L.S. Bolen, O. Svendsen, Regulatory guidelines for biocompatibility safety testing, Medical plastics and biomaterials: materials technology for medical products 4, 16 (1997)
  • [6] V. Han, K. Serrano, D.V. Devine, Vox Sang. 98, 116 (2010) http://dx.doi.org/10.1111/j.1423-0410.2009.01249.x[Crossref]
  • [7] P. Balasubramaniam, A. Malathi, J. Postgrad. Med. 38, 8 (1992)
  • [8] ASTM F756-00, Standard Practice for Assessment of Hemolytic Properties of Materials (ASTM International, West Conshohocken, PA, USA, 2004)
  • [9] W. Van Oeveren, P. Schoen, C.A. Maijers, S.H. Monnink, A.J. Van Boven, Progress in Biomedical Research. 4, 17 (1999)
  • [10] F. Date, C. Wagner, Hemostasis (Lothar Thomas’ Clinical Laboratory Diagnostics, Frankfurt, 1998) 602
  • [11] F. Fischbach, A Manual of Laboratory and Diagnostic Test, 8th edition (Lippincott, Philadelphia, 2009) 161
  • [12] C.M. Venturini, J.E. Kaplan, Semin. Thromb. Hemost. 18, 275 (1992) http://dx.doi.org/10.1055/s-2007-1002435[Crossref]
  • [13] C. Sperling, M. Fischer, M.F. Maitz, C. Werner, Biomaterials 30, 4447 (2009) http://dx.doi.org/10.1016/j.biomaterials.2009.05.044[Crossref]
  • [14] A. Mazare, M. Dilea, D. Ionita, I. Titorencu, V. Trusca, E. Vasile, Bioelectrochemistry 87, 124 (2012) http://dx.doi.org/10.1016/j.bioelechem.2012.01.002[Crossref]
  • [15] B.W. Buczynski, M.M. Kory, R.P. Steiner, T.A. Kittinger, R.D. Ramsier, Colloids Surf. B 30, 167 (2003) http://dx.doi.org/10.1016/S0927-7765(03)00068-7[Crossref]
  • [16] Y. Tamada, Y. Ikada, J. Biomed. Mater. Res. 28, 783 (1994) http://dx.doi.org/10.1002/jbm.820280705[Crossref]
  • [17] Y. Ikada, Biomaterials 15, 725 (1994) http://dx.doi.org/10.1016/0142-9612(94)90025-6[Crossref]
  • [18] P. Van der Valk, A.W.J. van Pelt, H.J. Busscher, H.P. de Jong, Ch.R.H. Wildevuur, J. Arends, J. Biomed. Mater. Res. 17, 807 (1983) http://dx.doi.org/10.1002/jbm.820170508[Crossref]
  • [19] P.B. Van Wachem, T. Beguiling, J. Feijen, A. Bantjes, J.P. Detmers, W.G. van Aken, Biomaterials 6, 403 (1985) http://dx.doi.org/10.1016/0142-9612(85)90101-2[Crossref]
  • [20] E. Eisenbarth, D. Velten, M. Müller, R. Thull, J. Breme, Biomaterials 25, 5705 (2004) http://dx.doi.org/10.1016/j.biomaterials.2004.01.021[Crossref]
  • [21] F. Rosalbino, D. Macciò, A. Saccone, E. Angelini, S. Delfino, Mater. Corr. 63, 580 (2012)
  • [22] Y.Z. Huang, D.J. Blackwood, Electroch. Acta 51, 1099 (2005) http://dx.doi.org/10.1016/j.electacta.2005.05.051[Crossref]
  • [23] D. Mareci, R. Chelariu, D.M. Gordin, G. Ungureanu, T. Gloriant, Acta Biomater. 5, 3625 (2009) http://dx.doi.org/10.1016/j.actbio.2009.05.037[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11532-014-0535-1
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.