PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2014 | 12 | 6 | 659-671
Article title

Significance of water quality and radiation wavelength for UV photolysis of PhCs in simulated mixed solutions

Content
Title variants
Languages of publication
EN
Abstracts
EN
Ultraviolet (UV) photolysis of sixteen pharmaceutical compounds (PhCs) in mixed solutions with four types of water and two sets of UV radiation was investigated. UVC (254 nm) photolysis was ineffective at eliminating a large number of PhCs while a big number of them were refractory. However, vacuum UV (VUV: 185 nm + 254 nm) photolysis in the same experimental conditions eliminated the PhCs almost completely. The eliminations in ultrapure water (UPW), tap water (TW) and Neya River water (NRW) and their organic/inorganic contents were inversely correlated, which was more evident in VUV photolysis. Natural organic matter (NOM) in NRW did not have an impact in indirect photolysis, but effluent organic matter (EfOM) in secondary-treated effluent (NWTPE) enhanced indirect photolysis, which was more evident in VUV photolysis underlining the point that radiation wavelength/intensity can be a limiting factor in organic-rich waters. Moreover, VUV photolysis was far superior (90% mineralization) to UVC photolysis (10% mineralization) for PhCs mineralization. The greatly enhanced elimination and mineralization efficiencies observed for VUV photolysis were attributed to accelerated direct photolysis with 185 nm wavelength and indirect photolysis involving ·OH. The results demonstrated efficacy of VUV photolysis in wastewater treatment and its potential use as a tertiary treatment.
Publisher

Journal
Year
Volume
12
Issue
6
Pages
659-671
Physical description
Dates
published
1 - 6 - 2014
online
13 - 3 - 2014
Contributors
author
author
  • Osaka Sangyo University
author
  • Osaka Sangyo University
  • Osaka Sangyo University
  • Osaka Sangyo University
References
  • [1] S.A. Snyder, Ozone Sci. Eng. 30, 65 (2008) http://dx.doi.org/10.1080/01919510701799278[Crossref]
  • [2] P.E. Stackelberg, J. Gibs, E.T. Furlong, M. Meyer, S.D. Zaugg, R.L. Lippincott, Sci. Total Environ. 377, 255 (2007) http://dx.doi.org/10.1016/j.scitotenv.2007.01.095[Crossref]
  • [3] D. Dolar, A. Vukovic, D. Asperger, K. Kosutic, J. Environ. Sci. 23(8), 1299 (2011) http://dx.doi.org/10.1016/S1001-0742(10)60545-1[Crossref]
  • [4] D. Fatta-Kassinos, M.I. Vasquez, K. Kummerer, Chemosphere 85, 693 (2011) http://dx.doi.org/10.1016/j.chemosphere.2011.06.082[Crossref]
  • [5] R.K. Szabo, PhD thesis (University of Szeged, Hungary, 2010)
  • [6] F. Yuan, C. Hu, X. Hu, J. Qu, M. Yang, Water Res. 43, 1766 (2009) http://dx.doi.org/10.1016/j.watres.2009.01.008[Crossref]
  • [7] V.J. Pereira, K.G. Linden, H.S. Weinberg, Water Res. 41, 4413 (2007a) http://dx.doi.org/10.1016/j.watres.2007.05.056[Crossref]
  • [8] V.J. Pereira, H.S. Weinberg, K.G. Linden, P.C. Singer, Environ. Sci. Technol. 41, 1682 (2007b) http://dx.doi.org/10.1021/es061491b[Crossref]
  • [9] A.Y. Lin, M. Reinhard, Environ. Toxicol. Chem. 24(6), 1303 (2005) http://dx.doi.org/10.1897/04-236R.1[Crossref]
  • [10] M.L. Hedgespeth, Y. Sapozhnikova, P. Pennington, A. Clum, A. Fairey, E. Wirth, Sci. Total Environ. 437, 1 (2012) http://dx.doi.org/10.1016/j.scitotenv.2012.07.076[Crossref]
  • [11] A. Jelic, M. Gros, A. Ginebreda, R. Cespedes-Sanchez, F. Ventura, M. Petrovic, D. Barceló, Water Res. 45, 1165 (2011) http://dx.doi.org/10.1016/j.watres.2010.11.010[Crossref]
  • [12] B. Kasprzyk-Hordern, R.M. Dinsdale, A.J. Guwy, Water Res. 43, 363 (2009) http://dx.doi.org/10.1016/j.watres.2008.10.047[Crossref]
  • [13] A. Gobel, C.S. McArdell, A. Joss, H. Siegrist, W. Giger, Sci. Total Environ. 372, 361 (2007) http://dx.doi.org/10.1016/j.scitotenv.2006.07.039[Crossref]
  • [14] B.A. Wols, C.H. Hofman-Caris, Water Res. 46, 2815 (2012) http://dx.doi.org/10.1016/j.watres.2012.03.036[Crossref]
  • [15] H. Schaar, M. Clara, O. Gans, N. Kreuzinger, Environ. Pollut. 158, 1399 (2010) http://dx.doi.org/10.1016/j.envpol.2009.12.038[Crossref]
  • [16] C. Martinez, M.L. Canle, M.I. Fernandez, J.A. Santaballa, J. Faria, Appl. Catal. B-Environ. 102, 563 (2011) http://dx.doi.org/10.1016/j.apcatb.2010.12.039[Crossref]
  • [17] C. Martinez, M.L. Canle, M.I. Fernandez, J.A. Santaballa, J. Faria, Appl. Catal. B-Environ., 107, 110 (2011) http://dx.doi.org/10.1016/j.apcatb.2011.07.003[Crossref]
  • [18] C. Martinez, S. Vilarino, M.I. Fernandez, J. Faria, M.L. Canle, J.A. Santaballa, Appl. Catal. B-Environ. 142/143, 633 (2013) http://dx.doi.org/10.1016/j.apcatb.2013.05.018[Crossref]
  • [19] J. Rivas, O. Gimeno, T. Borralho, J. Sagasti, Desalination 279, 115 (2011) http://dx.doi.org/10.1016/j.desal.2011.05.066[Crossref]
  • [20] I. Kim, N. Yamashita, H. Tanaka, Chemosphere 77, 518 (2009) http://dx.doi.org/10.1016/j.chemosphere.2009.07.041[Crossref]
  • [21] I. Kim, H. Tanaka, Environ. Int. 35, 793 (2009) http://dx.doi.org/10.1016/j.envint.2009.01.003[Crossref]
  • [22] C.C. Ryan, D.T. Tan, W.A. Arnold, Water Res. 45, 1280 (2011) http://dx.doi.org/10.1016/j.watres.2010.10.005[Crossref]
  • [23] R.R. Giri, H. Ozaki, Y. Takayanagi, S. Taniguchi, R. Takanami, Int. J. Environ. Sci. Technol. 8(1), 19 (2011)
  • [24] D.A. Armbruster, T. Pry, Clin. Biochem. Rev. 29, 49 (2008)
  • [25] A.B. Prevot, D. Fabbri, E. Pramauro, C. Baiocchi, C. Medana, E. Montoneri, V. Boffa, J. Photochem. Photobiol. A 209, 224 (2010) http://dx.doi.org/10.1016/j.jphotochem.2009.11.020[Crossref]
  • [26] H. Santoke, W. Song, W.J. Cooper, B.M. Peake, J. Hazard. Mater. 217–218, 382 (2012) http://dx.doi.org/10.1016/j.jhazmat.2012.03.049[Crossref]
  • [27] G. McKay, M.M. Dong, J.L. Kleinman, S.P. Mezyk, F.L. Rosairo-Ortiz, Environ. Sci. Technol. 45(16), 6932 (2011) http://dx.doi.org/10.1021/es201363j[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11532-014-0526-2
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.