Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 12 | 5 | 612-623

Article title

Experimental and theoretical studies on the photodegradation of 2-ethylhexyl 4-methoxycinnamate in the presence of reactive oxygen and chlorine species

Content

Title variants

Languages of publication

EN

Abstracts

EN
2-Ethylhexyl 4-methoxycinnamate (EHMC) is one of the most commonly used sunscreen ingredient. In this study we investigated photodegradation of EHMC in the presence of such common oxidizing and chlorinating systems as H2O2, H2O2/HCl, H2O2/UV, and H2O2/HCl/UV. Reaction products were detected by gas chromatography with a mass spectrometric detector (GC-MS). As a result of experimental studies chloro-substituted 4-methoxycinnamic acid (4-MCA), 4-methoxybenzaldehyde (4-MBA) and 4-methoxyphenol (4-MP) were identified. Experimental studies were enriched with DFT and MP2 calculations. We found that reactions of 4-MCA, 4-MBA and 4-MP with Cl2 and HOCl were in all cases thermodynamically favorable. However, reactivity indices provide a better explanation of the formation of particular chloroorganic compounds. Generally, those isomeric forms of mono- and dichlorinated compounds which exhibits the highest hardness were identified. Nucleophilicity of the chloroorganic compounds precursors were examined by means of the Fukui function.

Publisher

Journal

Year

Volume

12

Issue

5

Pages

612-623

Physical description

Dates

published
1 - 5 - 2014
online
21 - 2 - 2014

Contributors

  • University of Technology and Life Science
  • Nicolaus Copernicus University
  • University of Technology and Life Science
author
  • University of Technology and Life Science

References

  • [1] Y. Dobashi, T. Yuyama, Y. Ohkatsu, Polym. Degrad. Stab. 92, 1227 (2007) http://dx.doi.org/10.1016/j.polymdegradstab.2007.03.024[Crossref]
  • [2] V. S. Sivokhin, Polym. Sci. USSR 21, 1207 (1980) http://dx.doi.org/10.1016/0032-3950(79)90020-0[Crossref]
  • [3] A. Kikuchi, H. Saito, M. Mori, M. Yagi, Photochem. Photobiol. Sci. 10, 1902 (2011) http://dx.doi.org/10.1039/c1pp05168g[Crossref]
  • [4] A. J.M. Santos, M.S. Miranda, J.C.G. Esteves da Silva, Water Res. 46, 3167 (2012) http://dx.doi.org/10.1016/j.watres.2012.03.057[Crossref]
  • [5] A. J.M. Santos, D.M.A. Crista, M.S. Miranda, I.F. Almeida, J.P. Sousa e Silva, P.C. Costa, M.H. Amaral, P.A.L. Lobão, J.M. Sousa Lobo, J.C.G. Esteves da Silva, Environ. Chem. 10, 127 (2013) http://dx.doi.org/10.1071/EN13012[Crossref]
  • [6] M. S. Miranda, L. Pinto da Silva, J.C.G. Esteves da Silva, J. Phys. Org. Chem. 27, 47 (2014) http://dx.doi.org/10.1002/poc.3235[Crossref]
  • [7] Y. T. Chen, Y.T. Lin, C.C. Li, S.F. Sie, Y.W. Chen-Yang, Colloids Surf. B 115, 191 (2014) http://dx.doi.org/10.1016/j.colsurfb.2013.11.011[Crossref]
  • [8] Z. A. Lewicka, W.W. Yu, B.L. Oliva, E.Q. Contreras, V.L. Colvin, J. Photochem. Photobiol. A, 263, 24 (2013) http://dx.doi.org/10.1016/j.jphotochem.2013.04.019[Crossref]
  • [9] L. Zhou, Y. Ji, C. Zeng, Y. Zhang, Z. Wang, X. Yang, Water Res., 47, 153 (2013) http://dx.doi.org/10.1016/j.watres.2012.09.045[Crossref]
  • [10] Y. Ji, L. Zhou, Y. Zhang, C. Ferronato, M. Brigante, G. Mailhot, X. Yang, J.-M. Chovelon, Water Res. 47, 5865 (2013) http://dx.doi.org/10.1016/j.watres.2013.07.009[Crossref]
  • [11] A. Christiansson, J. Eriksson, D. Teclechiel, Å. Bergman, Environ. Sci. Pollut. Res. 16, 312 (2009) http://dx.doi.org/10.1007/s11356-009-0150-4[Crossref]
  • [12] L. A. MacManus-Spencer, M.L. Tse, J.L. Klein, A.E. Kracunas, Environ. Sci. Technol. 45, 3931 (2011) http://dx.doi.org/10.1021/es103682a[Crossref]
  • [13] C. Ferrari, H. Chen, R. Lavezza, C. Santinelli, I. Longo, E. Bramanti, Int. J. Photoenergy 2013, 1 (2013) http://dx.doi.org/10.1155/2013/854857[Crossref]
  • [14] V. Nikolić, D. Ilić, L. Nikolić, M. Stanković, M. Cakić, L. Stanojević, A. Kapor, M. Popsavin, Cent. Eur. J. Chem. 8, 744 (2010) http://dx.doi.org/10.2478/s11532-010-0043-x[Crossref]
  • [15] A. Y.C. Tong, R. Braund, D.S. Warren, B.M. Peake, Cent. Eur. J. Chem. 10, 989 (2012) http://dx.doi.org/10.2478/s11532-012-0049-7[Crossref]
  • [16] S. Pattanaargson, P. Limphong, Int. J. Cosmetic. Sci. 23, 153 (2001) http://dx.doi.org/10.1046/j.1467-2494.2001.00071.x[Crossref]
  • [17] N. Tarras-Wahlberg, G. Stenhagen, O. Larkö, A. Rosén, A.-M. Wennberg, O. Wennerström, J. Invest. Dermatol. 113, 547 (1999) http://dx.doi.org/10.1046/j.1523-1747.1999.00721.x[Crossref]
  • [18] J. Gaca, S. Żak Hydrogen peroxide and chlorides, examples of application and theoretical aspects (University of Technology and Agriculture in Bydgoszcz Publishers, Poland, 2004) (in Polish)
  • [19] M. Nakajima, T. Kawakami, T. Niino, Y. Takahashi, S. Onodera, J. Health. Sci. 55, 363 (2009) http://dx.doi.org/10.1248/jhs.55.363[Crossref]
  • [20] A. Gackowska, J. Gaca, Chemik 4, 301 (2011)
  • [21] N. Higashi, A. Ikehata, N. Kariyama, Y. Ozaki, Appl. Spectrosc. 62, 1022 (2008) http://dx.doi.org/10.1366/000370208785793236[Crossref]
  • [22] P. Cysewski, A. Gackowska, J. Gaca, Chemosphere 63, 165 (2006) http://dx.doi.org/10.1016/j.chemosphere.2005.06.061[Crossref]
  • [23] C. W. Jones, Applications of hydrogen peroxide and derivatives (Royal Society of Chemistry, Cambridge 1999)
  • [24] A. D. Becke, Phys. Rev. A 38, 3098 (1988) http://dx.doi.org/10.1103/PhysRevA.38.3098[Crossref]
  • [25] A. D. Becke, J. Chem. Phys. 98, 5648 (1993) http://dx.doi.org/10.1063/1.464913[Crossref]
  • [26] B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 157, 200 (1989) http://dx.doi.org/10.1016/0009-2614(89)87234-3[Crossref]
  • [27] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988) http://dx.doi.org/10.1103/PhysRevB.37.785[Crossref]
  • [28] S. Miertuš, E. Scrocco, J. Tomasi, Chem. Phys. 55, 117 (1981) http://dx.doi.org/10.1016/0301-0104(81)85090-2[Crossref]
  • [29] S. Miertuš, J. Tomasi, Chem. Phys. 65, 239 (1982) http://dx.doi.org/10.1016/0301-0104(82)85072-6[Crossref]
  • [30] M. J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision E. 01 (Gaussian, Inc., Pittsburgh PA, 2004)
  • [31] R. G. Pearson, Proc. Natl. Acad. Sci. USA 83, 8440 (1986) http://dx.doi.org/10.1073/pnas.83.22.8440[Crossref]
  • [32] R. G. Parr, L. von Szentpály, S. Liu, J. Am. Chem. Soc. 121, 1922 (1999) http://dx.doi.org/10.1021/ja983494x[Crossref]
  • [33] C. Møller, M.S. Plesset, Phys. Rev. 46, 0618 (1934) http://dx.doi.org/10.1103/PhysRev.46.618[Crossref]
  • [34] M. Head-Gordon, J.A. Pople, M.J. Frisch, Chem. Phys. Lett. 153, 503 (1988) http://dx.doi.org/10.1016/0009-2614(88)85250-3[Crossref]
  • [35] S. Saebø, J. Almlöf, Chem. Phys. Lett. 154, 83 (1989) http://dx.doi.org/10.1016/0009-2614(89)87442-1[Crossref]
  • [36] M. J. Frisch, M. Head-Gordon, J.A. Pople, Chem. Phys. Lett. 166, 275 (1990) http://dx.doi.org/10.1016/0009-2614(90)80029-D[Crossref]
  • [37] M. J. Frisch, M. Head-Gordon, J.A. Pople, Chem. Phys. Lett. 166, 281 (1990) http://dx.doi.org/10.1016/0009-2614(90)80030-H[Crossref]
  • [38] M. Head-Gordon, T. Head-Gordon, Chem. Phys. Lett. 220, 122 (1994) http://dx.doi.org/10.1016/0009-2614(94)00116-2[Crossref]
  • [39] J. Kruszewski, T.M. Krygowski, Tetrahedron Lett. 13, 3839 (1972) http://dx.doi.org/10.1016/S0040-4039(01)94175-9[Crossref]
  • [40] T. M. Krygowski, M.K. Cyrański, Z. Czarnocki, G. Haäfelinger, A.R. Katritzky, Tetrahedron 56, 1783 (2000) http://dx.doi.org/10.1016/S0040-4020(99)00979-5[Crossref]
  • [41] W. Yang, W.J. Mortier, J. Am. Chem. Soc. 108, 5708 (1986) http://dx.doi.org/10.1021/ja00279a008[Crossref]
  • [42] S. Pattanaargson, T. Munhapol, P. Hirumsupachot, P. Luangthongaram, J. Photochem. Photobiol. A 161, 269 (2004)
  • [43] S. P. Huong, V. Andrieu, J.-P. Reynier, E. Rocher, J.-D. Fourneron, J. Photochem. Photobiol. A 186, 65 (2007) http://dx.doi.org/10.1016/j.jphotochem.2006.07.012[Crossref]
  • [44] P. Renard, F. Siekmann, A. Gandolfo, J. Socorro, G. Salque, S. Ravier, E. Quivet, J.-L. Clément, M. Traikia, A.-M. Delort, D. Voisin, V. Vuitton, R. Thissen, A. Monod, Atmos. Chem. Phys. 13, 6473 (2013) http://dx.doi.org/10.5194/acp-13-6473-2013[Crossref]
  • [45] N. De la Cruz, J. Giménez, S. Esplugas, D. Grandjean, L.F. de Alencastro, C. Pulgarín Water Res. 46, 1947 (2012) http://dx.doi.org/10.1016/j.watres.2012.01.014[Crossref]
  • [46] M. Czaplicka, J. Hazard. Mater. 134, 45 (2006) http://dx.doi.org/10.1016/j.jhazmat.2005.10.039[Crossref]
  • [47] X. -W. Li, E. Shibata, T. Nakamura, Mater. Trans. 44, 2441 (2003) http://dx.doi.org/10.2320/matertrans.44.2441[Crossref]
  • [48] M. V. Roux, M. Temprado, J.S. Chickos, Y. Nagano, J. Phys. Chem. Ref. Data 37, 1855 (2008) http://dx.doi.org/10.1063/1.2955570[Crossref]
  • [49] V. A. Platonov, Yu.N. Simulin Russ. J. Phys. Chem. 59, 179 (1985)
  • [50] J. D. Cox, D.D. Wagman, V.A. Medvedev, CODATA Key Values for Thermodynamics (Hemisphere Publishing Corp, New York, 1984)
  • [51] M. W. Chase, NIST-JANAF Thermochemical Tables, J. Phys. Chem. Ref. Data, Monograph 9, 4th edition (American Chemical Society, American Institute of Physics, Washington, DC, 1998)
  • [52] M. Bekbolet, Z. Çınar, M. Kılıç, C.S. Uyguner, C. Minero, E. Pelizzetti, Chemosphere 75, 1008 (2009) http://dx.doi.org/10.1016/j.chemosphere.2009.01.051[Crossref]
  • [53] E. Zahedi, S. Ali-Asgari, V. Keley, Cent. Eur. J. Chem. 8, 1097 (2010) http://dx.doi.org/10.2478/s11532-010-0084-1[Crossref]
  • [54] R. Taylor, in: C.H. Bamford, C.F.H. Tipper (Eds.), Comprehensive chemical kinetics, (Elsevier Publishing Co, Amsterdam/New York, 1972) Volume 13: Reactions of aromatic compounds, 1
  • [55] G. S. Hammond, J. Am. Chem. Soc. 77, 334 (1955) http://dx.doi.org/10.1021/ja01607a027[Crossref]
  • [56] T. E. Jones, J. Phys. Chem. A 116, 4233 (2012) http://dx.doi.org/10.1021/jp302087n[Crossref]
  • [57] Md. E.U. Hoque, H.W. Lee, Bull. Korean. Chem. Soc. 32, 2109 (2011) http://dx.doi.org/10.5012/bkcs.2011.32.6.2109[Crossref]
  • [58] M. Przybyłek, J. Gaca, Chem. Pap. 66, 699 (2012) http://dx.doi.org/10.2478/s11696-012-0163-1[Crossref]
  • [59] V. Benin, J. Mol. Struc. (Theochem) 764, 21 (2006) http://dx.doi.org/10.1016/j.theochem.2006.01.030
  • [60] H. D. Banks, J. Org. Chem. 68, 2639 (2003) http://dx.doi.org/10.1021/jo0268411[Crossref]
  • [61] C. Hansch, A. Leo, R.W. Taft, Chem. Rev. 91, 165 (1991) http://dx.doi.org/10.1021/cr00002a004[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11532-014-0522-6
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.