Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 12 | 8 | 851-857

Article title

Saccharomyces cerevisiae yeast immobilized on marrow stem sunflower and polyacrylamide hydrogels

Content

Title variants

Languages of publication

EN

Abstracts

EN
Biocatalysts with microorganisms immobilized on solid carriers could provide the solution for development of continuous industrial processes for ethanol obtaining by fermentation of sugars. In this study, modified polyacrylamide hydrogels and marrow stem sunflower are used as supports for Saccharomyces cerevisiae yeast immobilization. The obtained structures are used for fermentation of molasses in batch systems. The free yeast cells are used as reference. The modification of polyacrilamide matrix with (2-hydroxyethyl)methacrylate has a positive effect on structure pore uniformity and fermentation performance. The mechanical properties of the obtained biocatalysts are compared. The novel natural matrix has net superior compression strength.

Publisher

Journal

Year

Volume

12

Issue

8

Pages

851-857

Physical description

Dates

published
1 - 8 - 2014
online
1 - 5 - 2014

Contributors

  • POLITEHNICA University of Bucharest
  • POLITEHNICA University of Bucharest
  • COMOTI
author
  • POLITEHNICA University of Bucharest

References

  • [1] S. Behera, S. Kar, R.C. Mohanty, R.C. Ray, Appl. Energy 87, 96 (2010) http://dx.doi.org/10.1016/j.apenergy.2009.05.030[Crossref]
  • [2] C. Zheng, X. Sun, L. Li, N. Guan, Bioresource Technol.115, 208 (2012) http://dx.doi.org/10.1016/j.biortech.2011.11.056[Crossref]
  • [3] G. Najafpour, H. Younesi, S. Ku, I. Ku, Bioresource Technol. 92, 251 (2004) http://dx.doi.org/10.1016/j.biortech.2003.09.009[Crossref]
  • [4] K. H. Lee, I.S. Choi, Y.G. Kim, D.J. Yang, H.J. Bae, Bioresource Technol. 102(17), 8191 (2011) http://dx.doi.org/10.1016/j.biortech.2011.06.063[Crossref]
  • [5] J. N. Nigam, J. Biotechnol. 80(2), 189 (2000) http://dx.doi.org/10.1016/S0168-1656(00)00246-7[Crossref]
  • [6] H. N. Oztop, A.Y. Oztop, E. Karada, Y. Isikver, D. Saraydin, Enzyme Microb. Technol. 32, 114 (2003) http://dx.doi.org/10.1016/S0141-0229(02)00244-2[Crossref]
  • [7] I. Calinescu et al., Rom. Biotech. Lett. 17(5), 7628 (2012)
  • [8] T. Takei, K. Ikeda, H. Ijima, K. Kawakami, Process Biochem. 46, 566 (2011) http://dx.doi.org/10.1016/j.procbio.2010.10.011[Crossref]
  • [9] Q. D. Nguyen, G. Gurin, A. Hoschke, J. Biotechnol. 150S, 169 (2010) http://dx.doi.org/10.1016/j.jbiotec.2010.08.439[Crossref]
  • [10] C. M. Galanakis et al., Bioresource Technol. 114, 492 (2012) http://dx.doi.org/10.1016/j.biortech.2012.03.010[Crossref]
  • [11] R. Razmovski, V. Vucurovic, Fuel 92, 1 (2012) http://dx.doi.org/10.1016/j.fuel.2011.07.046[Crossref]
  • [12] J. Yu, X. Zhang, T. Tan, J. Biotechnol. 129(3), 415 (2007) http://dx.doi.org/10.1016/j.jbiotec.2007.01.039[Crossref]
  • [13] A. Singh, P. Sharma, A.K. Saran, N. Singh, N.R. Bishnoi, Renew. Energ. 50, 488 (2013) http://dx.doi.org/10.1016/j.renene.2012.07.003[Crossref]
  • [14] L. Liang et al., J. Ind. Microbiol. Biotechnol. 35, 1605 (2008) http://dx.doi.org/10.1007/s10295-008-0404-z[Crossref]
  • [15] V. Vucurovic, R. Razmovski, Ind. Crop. Prod. 39, 128 (2012) http://dx.doi.org/10.1016/j.indcrop.2012.02.002[Crossref]
  • [16] S. Plessas, A.A. Bekatorou, M. Koutinas, I.M. Soupioni, B.R. Marchant, Bioresource Technol. 98, 860 (2007) http://dx.doi.org/10.1016/j.biortech.2006.03.014[Crossref]
  • [17] A. M. Pacheco, D.R. Gondim, L.R.B. Goncalves, Appl. Biochem. Biotechnol.161, 209 (2010) http://dx.doi.org/10.1007/s12010-009-8781-y[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11532-014-0508-4
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.