Preferences help
enabled [disable] Abstract
Number of results
2014 | 12 | 8 | 813-820
Article title

Mesostructured silica matrix for irinotecan delivery systems

Title variants
Languages of publication
Three mesostructured silica-type carriers, MCM-41 and MCM-41 functionalized by a postsynthesis grafting procedure with hydrophilic aminopropyl groups (MCM-APTES) and hydrophobic vinyl moieties (MCM-VTES), respectively, were investigated in order to elaborate drug delivery systems (DDS) for irinotecan molecules. All studied drug delivery systems exhibited higher cytotoxicity on murine embrionary fibroblastic (MEF) cells than free irinotecan at the same content of the cytostatic agent, whereas no toxicity was observed for the three unloaded carriers. The cytotoxic effect of irinotecan loaded on MCM-41-type carriers continued to increase even 24 h after ceasing the cell exposure to the drug and remained significantly higher than that of free irinotecan. The cellular uptake of silica-type hybrids was investigated by labelling MCM-APTES with Rhodamine B. In the case of the studied DDS, an endocytotic mechanism was found to be involved in the cell uptake process, and it was used to explain the cytotoxicity differences between free irinotecan and drug loaded on MCM-41-type supports.
Physical description
1 - 8 - 2014
1 - 5 - 2014
  • University “Politehnica” of Bucharest
  • University “Politehnica” of Bucharest
  • University “Politehnica” of Bucharest
  • University “Politehnica” of Bucharest
  • “Carol Davila” University of Medicine and Pharmacy of Bucharest
  • University Paris-Sud, CNRS, UMR 8502
  • “Carol Davila” University of Medicine and Pharmacy of Bucharest
  • [1] A.S. Hoffman, J. Control. Release 132, 153 (2008)[Crossref]
  • [2] S. Naahidi, M. Jafari, F. Edalat, K. Raymond, A. Khademhosseini, P. Chen, J. Control. Release 166, 182 (2013)[Crossref]
  • [3] M. Caldorera-Moore, N. Guimard, L. Shi, K. Roy, Expert Opin. Drug Del. 7, 479 (2010)[Crossref]
  • [4] G.A. Husseini, W.G. Pitt, Adv. Drug Del. Rev. 60, 1137 (2008)[Crossref]
  • [5] B.P. Bastakoti, K.C.W Wu, M. Inoue, S. Yusa, K. Nakashima, Y. Yamauchi, Chem. Eur. J. 19, 4812 (2013)[Crossref]
  • [6] D. Schmaljohann, Adv. Drug Del. Rev. 58, 1655 (2006)[Crossref]
  • [7] K. Knop, D. Pretzel, A. Urbanek, T. Rudolph, D.H. Scharf, A. Schallon, M. Wagner, S. Schubert, M. Kiehntopf, A.A. Brakhage, F.H. Schacher, U.S. Schubert, Biomacromolecules 14, 2536 (2013)[Crossref]
  • [8] T.M. Allen, P.R. Cullis, Adv. Drug Del. Rev. 65, 36 (2013)[Crossref]
  • [9] R.R. Sawant, V.P. Torchilin, Soft Matter 6, 4026 (2010)[Crossref]
  • [10] M.A. Quadir, R. Haag, J. Control. Release 161, 484 (2012)[Crossref]
  • [11] E. Gultepe, D. Nagesha, S. Sridhar, M. Amiji, Adv. Drug Del. 62, 305 (2010)[Crossref]
  • [12] M. Vallet-Regi, F. Balas, D. Arcos, Angew. Chem. Int. Ed. 46, 7548 (2007)[Crossref]
  • [13] B.G. Trewyn, I.I. Slowing, S. Giri, H.T. Chen, V.S.Y. Lin, Acc. Chem. Res. 40, 846 (2007)[Crossref]
  • [14] F. Hoffmann, M. Cornelius, J. Morell, M. Froba, Angew. Chem. Int. Ed. 45, 3216 (2006)[Crossref]
  • [15] T. Asefa, Z.M. Tao, Chem. Res. Toxicol. 25, 2265 (2012)[Crossref]
  • [16] D. Tam, C.E. Ashley, M. Xue, E.C. Carnes, J.I. Zink, C.J. Brinker, Acc. Chem. Res. 46, 792 (2013)[Crossref]
  • [17] S.B. Wang, Micropor. Mesopor. Mater. 117, 1 (2009)[Crossref]
  • [18] V. Mamaeva, C. Sahlgren, M. Linden, Adv. Drug Del. Rev. 65, 689 (2013)[Crossref]
  • [19] E. Ruoslahti, S.N. Bhatia, M.J. Sailor, J. Cell Biol. 188, 759 (2010)[Crossref]
  • [20] C. Morelli, P. Maris, D. Sisci, E. Perrotta, E. Brunelli, I. Perrotta, M.L. Panno, A. Tagarelli, C. Versace, M.F. Casula, F. Testa, S. Ando, J.B. Nagy, L. Pasqua, Nanoscale 3, 3198 (2011)[Crossref]
  • [21] M. Goldberg, R. Langer, X.Q. Jia, J. Biomater. Sci. Polym. Ed. 18, 241 (2007)[Crossref]
  • [22] R.H.J. Mathijssen, R.J. van Alphen, J. Verweij, W.J. Loos, K. Nooter, G. Stoter, A. Sparreboom, Clin. Cancer Res. 7, 2182 (2001)
  • [23] V. Pavillard, C. Agostini, S. Richard, V. Charasson, D. Montaudon, J. Robert, Cancer Chemother. Pharmacol. 49, 329 (2002)[Crossref]
  • [24] K. Kobayashi, B. Bouscarel, Y. Matsuzaki, S. Ceryak, S. Kudoh, H. Fromm, Int. J. Cancer 83, 491 (1999)<491::AID-IJC10>3.0.CO;2-M[Crossref]
  • [25] Q.J. He, J.L. Shi, F. Chen, M. Zhu, L.X. Zhang, Biomaterials 31, 3335 (2010)[Crossref]
  • [26] Y. Chen, H.R. Chen, M. Ma, F. Chen, L.M. Guo, L.X. Zhang, J.L. Shi, J. Mater. Chem. 21, 5290 (2011)[Crossref]
  • [27] G. Maria, D. Berger, S. Nastase, I. Luta, Micropor. Mesopor. Mater. 149, 25 (2012)[Crossref]
  • [28] Y. Wan, D.Y. Zhao, Chem. Rev. 107, 2821 (2007)[Crossref]
  • [29] G. Socrates, Infrared and Raman characteristics group frequencies, 3rd edition (John Wiley and Sons, Chichester, 2001)
  • [30] S. Nastase, L. Bajenaru, C. Matei, R.A. Mitran, D. Berger, Micropor. Mesopor. Mater. 182, 32 (2013)[Crossref]
  • [31] N. Mahrour, R. Pologea-Moraru, M.G. Moisescu, S. Orlowski, P. Leveque, L.M. Mir, Biochim. Biophys. Acta - Biomembranes 1668, 126 (2005)[Crossref]
  • [32] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, J.D. Watson, Molecular biology of the cell, 4th edition (Garland Pbl., New York, 2004)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.