Preferences help
enabled [disable] Abstract
Number of results
2014 | 12 | 4 | 476-479
Article title

Comparison of stability properties of poly(acrylic acid) adsorbed on the surface of silica, alumina and mixed silica-alumina nanoparticles - application of turbidimetry method

Title variants
Languages of publication
The influence of anionic poly(acrylic acid) - PAA addition on the stability of synthesized silica, alumina and mixed silica-alumina suspensions as a function of solution pH was studied. The turbidimetry method was used to monitor the changes of the examined systems stability over time. The calculated stability coefficients enabled estimation of polymer adsorption influence on stability of metal oxide suspension. It was shown that the alumina suspension without the polymer is the most unstable at the pH values 6 and 9, whereas the silica polymer was most unstable at pH 3. PAA with higher molecular weight (240 000) is a relatively effective stabilizer of all investigated adsorbents (except silica at pH 3). These properties of poly(acrylic acid) are highly desirable in many branches of industry (e.g. production of cosmetics, pharmaceuticals, paints) where polymers are widely used as effective stabilizers of colloidal suspensions.
Physical description
1 - 4 - 2014
16 - 1 - 2014
  • Maria Curie Sklodowska University
  • Maria Curie Sklodowska University
  • Maria Curie Sklodowska University
  • National Academy of Sciences of Ukraine
  • National Academy of Sciences of Ukraine
  • [1] D.H. Napper, Polymeric stabilization of colloidal dispersions (Academic Press London, 1983)
  • [2] R. Ma, X. Pang, I. Zhitomirsky, Surf. Eng. 27, 693 (2011)[Crossref]
  • [3] Y. Li, I. Zhitomirsky, Surf. Eng. 27, 698 (2011)[Crossref]
  • [4] Slivander, Prog. Slivander, Prog. Colloid Polym. Sci. 120, 35 (2002)
  • [5] Y.F. Wang, R.M. Wang, Z.C. Guo, Surf. Eng. 25, 36 (2009)[Crossref]
  • [6] Y.F. Wu, W. Liu, N.Y. Gao, T. Tao, Water Res. 45, 3704 (2011)[Crossref]
  • [7] A. Hassan, M. Ariffin, T.P. Li, N.Z. Zainon, J. Chem. Nat. Res. Eng. 4, 43 (2009)
  • [8] M.B. Gawande, R.K. Pandey, R.V. Jayaram, Cat. Sci. Tech. 2, 1113 (2012)[Crossref]
  • [9] E.J. Guidelli, E.M. Guerra, M. Mulato, J. Electrochem. Soci. 159, J217 (2012)[Crossref]
  • [10] S. Kaciulis, L. Pandolfi, S. Viticoli, G. Sberveglieri, E. Zampiceni, W. Wlodarski, K. Galatsis, Y.X. Li, Surf. Interf. Anal. 34, 672 (2002)[Crossref]
  • [11] W. Weilong, F. Xiaobo, J. Nanomat. ID 514917, 1 (2013)
  • [12] M. Wiśniewska, K. Terpiłowski, V.I. Zarko, S. Chibowski, E. Chibowski, T. Urban, V.M. Gun’ko, Chem. Phys. Tech. Surf. 1, 269 (2010)
  • [13] M. Wiśniewska, K. Terpiłowski, S. Chibowski, T. Urban, V.I. Zarko, V.M. Gun’ko, Powder Tech. 233, 190 (2013)[Crossref]
  • [14] M. Wiśniewska, K. Terpiłowski, S. Chibowski, T. Urban, V.I. Zarko, V.M. Gun’ko, Cent. Eur. J. Chem. 11, 101 (2013)[Crossref]
  • [15] Z. Pan, A. Campbell, P. Somasundaran, Colloids Surf. 191, 71 (2001)[Crossref]
  • [16] A. Zaman, R. Tsuchiya, B.M. Moudgil, J. Colloid Interf. Sci. 256, 73 (2002)[Crossref]
  • [17] I.T. Hafez, C.A. Paraskeva, P.G. Klepetsanis, P.G. Koutsoukos, Global NEST J. 12, 270 (2010)
  • [18] A.E. Akimkhan, Rus. J. Phys. Chem. 87, 1875 (2013)[Crossref]
  • [19] V.M. Gun’ko, V.I. Zarko, V.V. Turov, R. Leboda, E. Chibowski, L. Holysz, E.M. Pakhlov, E.F. Voronin, V.V. Dudnik, Y.I. Gornikov, J. Colloid Interf. Sci. 198, 141 (1998)[Crossref]
  • [20] M. Wiśniewska, A. Nosal-Wiercińska, I. Dąbrowska, K. Szewczuk-Karpisz, Micropor. Mesopor. Mat. 175, 92 (2013)[Crossref]
  • [21] A.S. Michaels, O. Morelos, 47, 1801 (1955)
  • [22] M. Wiśniewska, K. Terpiłowski, S. Chibowski, E. Chibowski, T. Urban, Molec. Cryst. Liq. Cryst. 555, 7 (2012)[Crossref]
  • [23] M. Wiśniewska, T. Urban, E. Grządka, V.I. Zarko, V.M. Gun’ko, Colloid Polym. Sci. DOI: 10.1007/s00396-013-3103-x [Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.