PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2014 | 12 | 9 | 909-917
Article title

Temperature effect over structure and photochemical properties of nanostructured SnO2 powders

Content
Title variants
Languages of publication
EN
Abstracts
EN
We successfully synthesized tin dioxide nanoparticles with polyhedral morphology via an ethylene glycol assisted sol-gel approach. The structural characteristics of three tin dioxide samples were investigated after being thermally treated at 400°C, 600°C and 800°C. X-ray diffraction (XRD) patterns clearly show the formation of single phase tin dioxide nanoparticles, with crystallite size of 6–20 nm, in good correlation with Fourier transform infrared (FTIR) spectra. Transmission electron microscopy (TEM) analysis confirms the formation of 6nm polyhedral nanoparticles for the 400°C sample. Ultraviolet-visible (UV-Vis) and photoluminescence (PL) spectra suggest a high concentration of oxygen vacancies. The oxygen vacancy concentration increases with temperature, due to the combined action of the formation of VO and the energetic O compensation. X-ray photoelectron spectroscopy (XPS) analysis also confirms the formation of single phase tin dioxide and the presence of oxygen vacancies in good agreement with UV-VIS and PL data.
Publisher

Journal
Year
Volume
12
Issue
9
Pages
909-917
Physical description
Dates
published
1 - 9 - 2014
online
1 - 5 - 2014
Contributors
  • University Politehnica of Bucharest
author
author
  • University Politehnica of Bucharest
  • University Politehnica of Bucharest
  • University Politehnica of Bucharest
author
  • University Politehnica of Bucharest
References
  • [1] M. Batzill, U. Diebold, Prog. Surf. Sci. 79, 47 (2005) http://dx.doi.org/10.1016/j.progsurf.2005.09.002[Crossref]
  • [2] S. Mohanty, S. Ravi, Solid State Commun. 150, 739 (2010) http://dx.doi.org/10.1016/j.ssc.2010.01.029[Crossref]
  • [3] H. Pirmoradi, J. Malakootikhah, M. Karimipour, A. Ahmadpour, N. Shahtahmasebi, F.E. Koshky, Middle-East J. Sci. Res. 8, 253 (2011)
  • [4] R. Parra, L.A. Ramajo, M.S. Goes, J.A. Varela, M.S. Castro, Mater. Res. Bull. 43, 3202 (2008) http://dx.doi.org/10.1016/j.materresbull.2008.03.001[Crossref]
  • [5] X.L. Wang, Z.X. Dai, Z. Zeng, J. Phys-Condens. Mat. 20, 045214 (2008). http://dx.doi.org/10.1088/0953-8984/20/04/045214[Crossref]
  • [6] G. Sberveglieri, C. Baratto, E. Comini, G. Faglia, M. Ferroni, M. Pardo, A. Ponzoni, A. Vomiero, Thin Solid Films. 517, 6156 (2009) http://dx.doi.org/10.1016/j.tsf.2009.04.004[Crossref]
  • [7] J.H. Im, J.H. Lee, D.W. Park, Surf. Coat. Tech. 202, 5471, (2008) http://dx.doi.org/10.1016/j.surfcoat.2008.06.063[Crossref]
  • [8] Q.H. Wu, J. Song, J.C. Li, Surf. Interface Anal. 40, 1488 (2008) http://dx.doi.org/10.1002/sia.2944[Crossref]
  • [9] T.J. Stanimirova, P.A. Atanasov, I.G. Dimitrov, A.O. Dikovska, J. Optoelectron. Adv. M. 7, 1335 (2005)
  • [10] Z.W. Chen, J.K.L. Lai, C.H. Shek, H.D. Chen, J. Mater. Res. 18, 1289 (2003) http://dx.doi.org/10.1557/JMR.2003.0176[Crossref]
  • [11] M. Krishna, S. Komarneni, Ceram. Int. 35, 3375 (2009) http://dx.doi.org/10.1016/j.ceramint.2009.06.010[Crossref]
  • [12] K. Anandan, V. Rajendran, Journal of Non-Oxide Glasses. 2, 83 (2010)
  • [13] H.L. Zhu, D.R. Yang, G.X. Yu, H. Zhang, K.H. Yao, Nanotechnology. 17, 2386 (2006) http://dx.doi.org/10.1088/0957-4484/17/9/052[Crossref]
  • [14] S.M. Zhu, D. Zhang, J.J. Gu, J.Q. Xu, J.P. Dong, J.L. Li, J. Nanopart. Res. 12, 1389 (2010) http://dx.doi.org/10.1007/s11051-009-9684-0[Crossref]
  • [15] M. Ristic, M. Ivanda, S. Popovic, S. Music, J. Non-Cryst. Solids. 303, 270 (2002) http://dx.doi.org/10.1016/S0022-3093(02)00944-4[Crossref]
  • [16] R.N. Mariammal, N. Rajamanickam, K. Ramachandran, J. Nano-Electron. Phys. 3, 92 (2011)
  • [17] H. Taib, C.C. Sorrell, J.Aust. Ceram. Soc. 43, 56 (2007)
  • [18] F. Li, L.Y. Chen, Z.Q. Chen, J.Q. Xu, J.M. Zhu, X.Q. Xin, Mater. Chem. Phys. 73, 335 (2002) http://dx.doi.org/10.1016/S0254-0584(01)00357-1[Crossref]
  • [19] M.P. Singh, P.S. Chandi, R.C. Singh, J. Optoelectron. Adv. M. 9, 3275 (2007)
  • [20] J.R. Zhang, L. Gao, J. Solid State Chem. 177, 1425 (2004) http://dx.doi.org/10.1016/j.jssc.2003.11.024[Crossref]
  • [21] R.S. Niranjan, Y.K. Hwang, D.K. Kim, S.H. Jhung, J.S. Chang, I.S. Mulla, Mater. Chem. Phys. 92, 384 (2005) http://dx.doi.org/10.1016/j.matchemphys.2005.01.050[Crossref]
  • [22] S. Shukla, S. Patil, S.C. Kuiry, Z. Rahman, T. Du, L. Ludwig, C. Parish, S. Seal, Sensor Actuat B-Chem. 96, 343 (2003) http://dx.doi.org/10.1016/S0925-4005(03)00568-9[Crossref]
  • [23] S. Gnanam, V. Rajendran, Dig. J. Nanomater. Bios. 5, 699 (2010)
  • [24] S. Gnanam, V. Rajendran, J. Optoelectron. Adv. M. 12, 2199 (2010)
  • [25] C. Junin, M. Krissanasaeranee, A.M. Jamieson, S. Wongkasemjit, Chiang Mai J. Sci. 32, 385 (2005)
  • [26] G. Zhang, M. Liu, J. Mater. Sci. 34, 3213 (1999) http://dx.doi.org/10.1023/A:1004685907751[Crossref]
  • [27] A.R. Babar, S.S. Shinde, A.V. Moholkar, K.Y. Rajpure, J. Alloy. Compd. 505, 743 (2010) http://dx.doi.org/10.1016/j.jallcom.2010.06.131[Crossref]
  • [28] Z. Yang, et al., Electrochim. Acta. 55, 5485 (2010) http://dx.doi.org/10.1016/j.electacta.2010.04.045[Crossref]
  • [29] Y. Masuda, Prog. Cryst. Growth Ch. 58, 106 (2012) http://dx.doi.org/10.1016/j.pcrysgrow.2012.02.003[Crossref]
  • [30] J. Szuber, G. Czempik, R. Larciprete, D. Koziej, B. Adamowicz, Thin Solid Films 391, 198 (2001) http://dx.doi.org/10.1016/S0040-6090(01)00982-8[Crossref]
  • [31] D. Amalric-Popescu, F. Bozon-Verduraz, Catal. Today. 70, 139 (2001) http://dx.doi.org/10.1016/S0920-5861(01)00414-X[Crossref]
  • [32] O. Acarbas, E. Suvaci, A. Dogan, Ceram. Int. 33, 537 (2007) http://dx.doi.org/10.1016/j.ceramint.2005.10.024[Crossref]
  • [33] M. Epifani, M. Alvisi, L. Mirenghi, G. Leo, P. Siciliano, L. Vasanelli, J. Am. Ceram. Soc. 84, 48 (2001) http://dx.doi.org/10.1111/j.1151-2916.2001.tb00606.x[Crossref]
  • [34] J. Jouhannaud, J. Rossignol, D. Stuerga, J. Solid State Chem. 181, 1439 (2008) http://dx.doi.org/10.1016/j.jssc.2008.02.040[Crossref]
  • [35] O.R. Vasile, E. Andronescu, C. Ghitulica, B.S. Vasile, O. Oprea, E. Vasile, R. Trusca, J. Nanopart. Res. 14, 1269 (2012). http://dx.doi.org/10.1007/s11051-012-1269-7[Crossref]
  • [36] M. Aziz, S.S. Abbas, W.R.W. Baharom, Mater. Lett. 91, 31 (2013) http://dx.doi.org/10.1016/j.matlet.2012.09.079[Crossref]
  • [37] M.M. Bagheri-Mohagheghi, N. Shahtahmasebi, M.R. Alinejad, A. Yousseffi, M. Shokooh-Saremi, Physica B. 403, 2431 (2008) http://dx.doi.org/10.1016/j.physb.2008.01.004[Crossref]
  • [38] F. Davar, F. Mohandes, M. Salavati-Niasari, Polyhedron. 29, 3132 (2010) http://dx.doi.org/10.1016/j.poly.2010.08.022[Crossref]
  • [39] N. Talebian, F. Jafarinezhad, Ceram. Int. 39, 8311 (2013) http://dx.doi.org/10.1016/j.ceramint.2013.03.101[Crossref]
  • [40] H.H. Son, W.G. Lee, J. Ind. Eng. Chem. 18, 317 (2012) http://dx.doi.org/10.1016/j.jiec.2011.11.042[Crossref]
  • [41] A. Gaber, A.Y. Abdel-Latief, M.A. Abdel-Rahim, M.N. Abdel-Salam, Mat. Sci. Semicon. Proc. 16, 1784 (2013) http://dx.doi.org/10.1016/j.mssp.2013.06.026[Crossref]
  • [42] M.A. El Khakani, R. Dolbec, A.M. Serventi, M.C. Horrillo, M. Trudeau, R.G. Saint-Jacques, D.G. Rickerby, I. Sayago, Sensor. Actuat. B-Chem. 77, 383 (2001) http://dx.doi.org/10.1016/S0925-4005(01)00758-4[Crossref]
  • [43] O. Oprea, E. Andronescu, B.S. Vasile, G. Voicu, C. Covaliu, Dig. J. Nanomater. Bios. 6, 1393 (2011)
  • [44] W.F. Zhang, Z. Yin, M.S. Zhang, Z.L. Du, W.C. Chen, J. Phys-Condens. Mat. 11, 5655 (1999) http://dx.doi.org/10.1088/0953-8984/11/29/312[Crossref]
  • [45] W.F. Zhang, M.S. Zhang, Z. Yin, Q. Chen, Appl. Phys. B-Lasers O. 70, 261 (2000) http://dx.doi.org/10.1007/s003400050043[Crossref]
  • [46] W.F. Zhang, M.S. Zhang, Z. Yin, Phys. Status Solidi A. 179, 319 (2000) http://dx.doi.org/10.1002/1521-396X(200006)179:2<319::AID-PSSA319>3.0.CO;2-H[Crossref]
  • [47] D. Gingasu, O. Oprea, I. Mindru, D.C. Culita, L. Patron, Dig. J. Nanomater. Bios. 6, 1215 (2011)
  • [48] S. Das, S. Kar, S. Chaudhuri, J. Appl. Phys. 99, 114303 (2006). http://dx.doi.org/10.1063/1.2200449[Crossref]
  • [49] Y. Zhu, Y. Chen, X. Zhang, Eur. J. Chem. 2, 8 (2011) http://dx.doi.org/10.5155/eurjchem.2.1.8-13.134[Crossref]
  • [50] H.W. Seo, S.Y. Bae, J. Park, H.N. Yang, K.S. Park, S. Kim, J. Chem. Phys. 116, 9492 (2002) http://dx.doi.org/10.1063/1.1475748[Crossref]
  • [51] F. Gu, S.F. Wang, C.F. Song, M.K. Lu, Y.X. Qi, G.J. Zhou, D. Xu, D.R. Yuan, Chem. Phys. Lett. 372, 451 (2003) http://dx.doi.org/10.1016/S0009-2614(03)00440-8[Crossref]
  • [52] K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983 (1996) http://dx.doi.org/10.1063/1.362349[Crossref]
  • [53] F. Gu, S.F. Wang, M.K. Lu, Y.X. Qi, G.J. Zhou, D. Xu, D.R. Yuan, Opt. Mater. 25, 59 (2004) http://dx.doi.org/10.1016/S0925-3467(03)00226-X[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11532-013-0400-7
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.