Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 12 | 2 | 173-184

Article title

Silica synthesis by the sol-gel method and its use in the preparation of multifunctional biocomposites

Content

Title variants

Languages of publication

EN

Abstracts

EN
This study focuses on the optimization process of silica synthesis using the sol-gel method while applying a statistical design of experiments which was based on a multilevel mathematical model. The product obtained in the process of optimized synthesis, characterized by the best dispersive and morphological parameters, was used for the preparation of organic/inorganic composites. The organic precursor was Kraft lignin, a high-molecular natural polymer. Synthesis of silica/lignin biocomposites was carried out by three proposed methods. The physicochemical properties and dispersive-morphological properties of each product were determined using the following available methods: Scanning Electron Microscopy - SEM, Non-Invasive Back-Scattering - NIBS, Fourier Transform Infrared Spectroscopy - FT-IR, Thermogravimetric analysis - TG and others. The electrokinetic and thermal properties of the biocomposites sufficed to be applied for example, as a cheap and biodegradable polymer filler. Further areas of application of these composites were sought, especially in electrochemistry as the advanced electrode materials.

Publisher

Journal

Year

Volume

12

Issue

2

Pages

173-184

Physical description

Dates

published
1 - 2 - 2014
online
27 - 11 - 2013

Contributors

  • Poznan University of Technology
  • Poznan University of Technology
  • Poznan University of Technology

References

  • [1] W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 26, 62 (1968) http://dx.doi.org/10.1016/0021-9797(68)90272-5[Crossref]
  • [2] H. Hofmeister, P. Ködderitzsch, J. Dutta, J. Non-Cryst. Solids 232–234, 182 (1998) http://dx.doi.org/10.1016/S0022-3093(98)00382-2[Crossref]
  • [3] J. Żurawska, A. Krysztafkiewicz, T. Jesionowski, J. Chem. Technol. Biot. 78, 534 (2003) http://dx.doi.org/10.1002/jctb.826[Crossref]
  • [4] T. Jesionowski, Mater. Chem. Phys. 113, 839 (2009) http://dx.doi.org/10.1016/j.matchemphys.2008.08.067[Crossref]
  • [5] T. Jesionowski, F. Ciesielczyk, A. Krysztafkiewicz, Mater. Chem. Phys. 119, 65 (2010) http://dx.doi.org/10.1016/j.matchemphys.2009.07.034[Crossref]
  • [6] K. Quarch, E. Durand, C. Schilde, A. Kwade, M. Kind, Chem. Eng. Res. Des. 88, 1639 (2010) http://dx.doi.org/10.1016/j.cherd.2010.01.007[Crossref]
  • [7] R.K. Iler, Chemistry of Silica - Soulibility, Polimerization, Colloid and Surface Properties and Biochemistry. John Wiley & Sons, New Jersey (1979)
  • [8] J.H. Lora, W.G. Glasser, J. Polym. Environ. 10, 39 (2002) http://dx.doi.org/10.1023/A:1021070006895[Crossref]
  • [9] J. Zakzeski, P.C. Bruijnincx, A.L. Jongerius, B.M. Weckhuysen, Chem. Rev. 110, 3552 (2010) http://dx.doi.org/10.1021/cr900354u[Crossref]
  • [10] J.J. Meister, J. Macromol. Sci.-Pol. R. 42, 235 (2002) http://dx.doi.org/10.1081/MC-120004764[Crossref]
  • [11] R. Zhong, Z.H. Ye, Plant Signal. Behav. 11, 1028 (2009) http://dx.doi.org/10.4161/psb.4.11.9875[Crossref]
  • [12] N.D. Bonawitz, C. Chapple, Annu. Rev. Genet. 44, 337 (2010) http://dx.doi.org/10.1146/annurev-genet-102209-163508[Crossref]
  • [13] D.W.S. Wong, Appl. Biochem. Biotech. 157, 174 (2009) http://dx.doi.org/10.1007/s12010-008-8279-z[Crossref]
  • [14] S.K. Srivastava, A.K. Singh, A. Sharma, Environ. Technol. 15, 353 (1994) http://dx.doi.org/10.1080/09593339409385438[Crossref]
  • [15] S. Babel, T.A. Kurniawan, J. Hazard. Mater. 97, 219 (2003) http://dx.doi.org/10.1016/S0304-3894(02)00263-7[Crossref]
  • [16] D. Mohan, C.U. Pittman, P.H. Steele, J. Colloid Interface Sci. 297, 489 (2006) http://dx.doi.org/10.1016/j.jcis.2005.11.023[Crossref]
  • [17] E. Masai, Y. Katayama, M. Fukuda, Biosci. Biotech. Biochem. 71, 1 (2007) http://dx.doi.org/10.1271/bbb.60437[Crossref]
  • [18] M. Ahmad, C.R. Taylor, D. Pink, K. Burton, D. Eastwood, G.D. Bending, T.D. Bugg, Mol. Biosyst. 6, 815 (2010) http://dx.doi.org/10.1039/b908966g[Crossref]
  • [19] Y. Qu, Y. Tian, B. Zou, J. Zhang, Y. Zheng, L. Wang, Y. Li, C. Rong, Z. Wang, Bioresource Technol. 101, 8402 (2010) http://dx.doi.org/10.1016/j.biortech.2010.05.067[Crossref]
  • [20] Ł. Klapiszewski, M. Mądrawska, T. Jesionowski, Physicochem. Probl. Miner. Process. 48, 463 (2012)
  • [21] Ł. Klapiszewski, M. Nowacka, G. Milczarek, T. Jesionowski, Carbohydr. Polym. 94, 345 (2013) http://dx.doi.org/10.1016/j.carbpol.2013.01.058[Crossref]
  • [22] G. Milczarek, O. Inganäs, Science 335, 1468 (2012) http://dx.doi.org/10.1126/science.1215159[Crossref]
  • [23] T.Q. Hu, Chemical Modification, Properties and Usage of Lignin. Springer, New York (2002) http://dx.doi.org/10.1007/978-1-4615-0643-0[Crossref]
  • [24] H.G. Jung, D.R. Mertens, A.J. Payne, J. Dairy Sci. 80, 1622 (1997) http://dx.doi.org/10.3168/jds.S0022-0302(97)76093-4[Crossref]
  • [25] A. Zhang, F. Lu, R.C. Sun, J. Ralph, J. Agr. Food Chem. 58, 3446 (2010) http://dx.doi.org/10.1021/jf903998d[Crossref]
  • [26] F.E. Brauns, J. Am. Chem. Soc. 61, 2120 (1939) http://dx.doi.org/10.1021/ja01877a043[Crossref]
  • [27] C. Crestini, F. Melone, M. Sette, R. Saladino, Biomacromolecules 12, 3928 (2011) http://dx.doi.org/10.1021/bm200948r[Crossref]
  • [28] L. Kouisni, Y. Fang, M. Paleologou, B. Ahvazi, J. Hawari, Y. Zhang, X.M. Wang, Cell. Chem. Technol. 45, 515 (2011)
  • [29] A. Vishtal, A. Kraslawski, Bioresources 6, 3547 (2011)
  • [30] A.S. Jönsson, A.K. Nordin, O. Wallberg, Chem. Eng. Res. Des. 86, 1271 (2008) http://dx.doi.org/10.1016/j.cherd.2008.06.003[Crossref]
  • [31] J.H. Clark, Green Chem. 8, 17 (2006) http://dx.doi.org/10.1039/b516637n[Crossref]
  • [32] T. Jesionowski, A. Krysztafkiewicz, J. Non-Cryst. Solids 277, 45 (2000) http://dx.doi.org/10.1016/S0022-3093(00)00299-4[Crossref]
  • [33] M. Lazghab, K. Saleh, P. Guigon, Chem. Eng. Res. Des. 88, 686 (2010) http://dx.doi.org/10.1016/j.cherd.2009.11.005[Crossref]
  • [34] M. Szekeres, I. Dékány, A. De Keizer, Colloids Surf. A 141, 327 (1998) http://dx.doi.org/10.1016/S0927-7757(97)00116-7[Crossref]
  • [35] M. Kosmulski, Surface Charging and Points of Zero Charge (CRC Press, New York, 2009) http://dx.doi.org/10.1201/9781420051896[Crossref]
  • [36] K. Rodríguez, M. Araujo, J. Colloid Interface Sci. 300, 788 (2006) http://dx.doi.org/10.1016/j.jcis.2006.04.030[Crossref]
  • [37] E. Rosenbrand, I. Lykke Fabricius, H. Yuan, Thirty-Seventh Workshop on Geothermal Reservoir Engineering, Stanford, California (2012)
  • [38] A. Tejado, C. Peňa, J. Labidi, J.M. Echeverria, I. Mondragon, Bioresource Technol. 98, 1655 (2007) http://dx.doi.org/10.1016/j.biortech.2006.05.042[Crossref]
  • [39] M. González Alriols, A. Garcia, Llano-ponte, J. Labidi, Chem. Eng. J. 157, 113 (2010) http://dx.doi.org/10.1016/j.cej.2009.10.058[Crossref]
  • [40] J. Rodríguez-Mirasol, T. Cordero, J.J. Rodríguez, Carbon 31, 53 (1993) http://dx.doi.org/10.1016/0008-6223(93)90155-4[Crossref]
  • [41] T.X. Fan, T. Hirose, T. Okabe, D. Zhang, R. Teranishi, M. Yoshimura, J. Porous Mat. 9, 35 (2002) http://dx.doi.org/10.1023/A:1014399621253[Crossref]
  • [42] M. Kijima, T. Hirukawa, F. Hanawa, T. Hata, Bioresource Technol. 102, 6279 (2011) http://dx.doi.org/10.1016/j.biortech.2011.03.023[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11532-013-0370-9
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.