PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2014 | 12 | 2 | 233-241
Article title

Adsorption studies and release of selected dyes from functionalized mesoporous MCM-41 silica

Content
Title variants
Languages of publication
EN
Abstracts
EN
Functionalized mesoporous MCM-41 silica was subjected to adsorption and release studies of encapsulated guest molecules of three chosen dyes. These mesoporous systems were composed of three different capping reagents introduced by grafting method on the silica surface to control the release of dye molecules at two different pH values. The amounts of dyes adsorbed on the silica surface were measured using ultraviolet-visible (UV-VIS) spectrophotometry. The efficiency of grafting was calculated on the basis of differential thermal analysis (TG) results and elemental analysis. The release profiles were determined for all obtained systems using USP Dissolution Apparatus 2. Adsorption of the two azo dyes used was the most efficient after the positively charged functionalization and lower after functionalization with neutral and negatively charged capping reagents, while the phthalocyanine dye adsorption was almost functionalization-independent. Grafting efficiency was the highest for neutral capping reagent and much lower for electrically charged molecules of other reagents. Release studies showed clearly that desorption was pH-dependent for azo dyes and pH independent for Alcian Blue. The adsorption and release seem to be connected with the electrical charge of all constituents of these systems. Results obtained can be used for further analysis of different electrically charged molecules.
Keywords
Publisher
Journal
Year
Volume
12
Issue
2
Pages
233-241
Physical description
Dates
published
1 - 2 - 2014
online
27 - 11 - 2013
References
  • [1] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, J. Am. Chem. Soc. 114, 10834 (1992) http://dx.doi.org/10.1021/ja00053a020[Crossref]
  • [2] A. Popat, J. Liu, Q. Hu, M. Kennedy, B. Peters, G. Qing, M. Lu, S.Z. Qiao, Nanoscale 4, 970 (2012) http://dx.doi.org/10.1039/c2nr11691j[Crossref]
  • [3] A. Taguchi, F. Schuth, Microporous and Mesoporous Materials 77, 1 (2005) http://dx.doi.org/10.1016/j.micromeso.2004.06.030[Crossref]
  • [4] I.I. Slowing, B.G. Trewyn, S. Giri, V.S.-Y. Lin, Adv. Funct. Mater. 17, 1225 (2007) http://dx.doi.org/10.1002/adfm.200601191[Crossref]
  • [5] Y. Wei, H. Dong, J. Xu, Q. Feng, Chem. Phys. Chem. 3, 802 (2002) http://dx.doi.org/10.1002/1439-7641(20020916)3:9<802::AID-CPHC802>3.0.CO;2-H[Crossref]
  • [6] Z. Dai, S. Liu, H. Ju, H. Chen, Biosens. Bioelectron. 19, 861 (2004) http://dx.doi.org/10.1016/j.bios.2003.08.024[Crossref]
  • [7] N. Kishor Mal, M. Fujiwara, Y. Tanaka, T. Taguchi, M. Matsukata, Chem. Mater. 15, 3385 (2003) http://dx.doi.org/10.1021/cm0343296[Crossref]
  • [8] Q. He, J. Shi, J. Mater. Chem. 21, 5845 (2011) http://dx.doi.org/10.1039/c0jm03851b[Crossref]
  • [9] K.K. Coti, M.E. Belowich, M. Liong, M.W. Ambrogio, Y.A. Lau, H.A. Khatib, J.I. Zink, N.M. Khashab, J. F. Stoddart, Nanoscale 1, 16 (2009) http://dx.doi.org/10.1039/b9nr00162j[Crossref]
  • [10] L. Du, H. Song, S. Liao, Microporous and Mesoporous Materials 147, 200 (2012) http://dx.doi.org/10.1016/j.micromeso.2011.06.020[Crossref]
  • [11] H. Meng, M. Xue, T. Xia, Y.L. Zhao, F. Tamanoi, J.F. Stoddart, J.I. Zink, A.E. Nel, J. Am. Chem. Soc. 132, 12690 (2010) http://dx.doi.org/10.1021/ja104501a[Crossref]
  • [12] Q. He, Y. Gao, L. Zhang, Z. Zhang, F. Gao, X. Ji, Y. Li, J. Shi, Biomaterials 32, 7711 (2011) http://dx.doi.org/10.1016/j.biomaterials.2011.06.066[Crossref]
  • [13] N. Singh, A. Karambelkar, L. Gu, K. Lin, J.S. Miller, C.S. Chen, M.J. Sailor, S.N. Bhatia, J. Am. Chem. Soc. 133, 19582 (2011) http://dx.doi.org/10.1021/ja206998x[Crossref]
  • [14] F. Hoffmann, M. Cornelius, J. Morell, M. Fröba, Angew. Chem. Int. Ed. 45, 3216 (2006) http://dx.doi.org/10.1002/anie.200503075[Crossref]
  • [15] M. Vallet-Regí, F. Balas, D. Arcos, Angew. Chem. Int. Ed. 46, 7548 (2007) http://dx.doi.org/10.1002/anie.200604488[Crossref]
  • [16] F. Balas, M. Manzano, P. Horcajada, M. Vallet-Regí, J. Am. Chem. Soc. 128, 8116 (2006) http://dx.doi.org/10.1021/ja062286z[Crossref]
  • [17] T.D. Nguyen, K.C.F. Leung, M. Liong, C.D. Pentecost, J.F. Stoddart, J.I. Zink, Org. Lett. 8, 3363 (2006) http://dx.doi.org/10.1021/ol0612509[Crossref]
  • [18] K.C.F. Leung, T.D. Nguyen, J.F. Stoddart, J.I. Zink, Chem. Mater. 18, 5919 (2007) http://dx.doi.org/10.1021/cm061682d[Crossref]
  • [19] C. Park, K. Oh, S.C. Lee, C. Kim, Angew. Chem. Int. Ed. 46, 1455 (2007) http://dx.doi.org/10.1002/anie.200603404[Crossref]
  • [20] S. Angelos, N.M. Khashab, Y.W. Yang, A. Trabolsi, H.A. Khatib, J.F. Stoddart, J.I. Zink, J. Am. Chem. Soc. 131, 12912 (2009) http://dx.doi.org/10.1021/ja9010157[Crossref]
  • [21] P. Demuth, M. Hurley, C. Wu, S. Galanie, M.R. Zachariah, P. Deshong, Microporous and Mesoporous Materials 141, 128 (2011) http://dx.doi.org/10.1016/j.micromeso.2010.10.035[Crossref]
  • [22] S. Angelos, Y.W. Yang, K. Patel, J.F. Stoddart, J.I. Zink, Angew. Chem. Int. Ed. 47, 2222 (2008) http://dx.doi.org/10.1002/anie.200705211[Crossref]
  • [23] N.K. Mal, M. Fujiwara, Y. Tanaka, Nature 421, 350 (2003) http://dx.doi.org/10.1038/nature01362[Crossref]
  • [24] M. Liu, D.R. Dunphy, P. Atanassov, S.D. Bunge, Z. Chen, G.P. López, T.J. Boyle, C.J. Brinker, Nano Lett. 4, 551 (2004) http://dx.doi.org/10.1021/nl0350783[Crossref]
  • [25] T.D. Nguyen, K.C.F. Leung, M. Liong, Y. Liu, J.F. Stoddart, J.I. Zink, Adv. Funct. Mater. 17, 2101 (2007) http://dx.doi.org/10.1002/adfm.200600751[Crossref]
  • [26] J. Lu, E. Choi, F. Tamanoi, J.I. Zink, Small 4, 421 (2008) http://dx.doi.org/10.1002/smll.200700903[Crossref]
  • [27] D. Ferris, Y.L. Zhao, N.M. Khashab, H.A. Khatib, J.F. Stoddart, J.I. Zink, J. Am. Chem. Soc. 131, 1686 (2009) http://dx.doi.org/10.1021/ja807798g[Crossref]
  • [28] J. Lai, X. Mu, Y. Xu, X. Wu, C. Wu, C. Li, J. Chen, Y. Zhao, Chem. Commun. 46, 7370 (2010) http://dx.doi.org/10.1039/c0cc02914a[Crossref]
  • [29] R. Hernandez, H.R. Tseng, J.W. Wong, J.F. Stoddart, J.I. Zink, J. Am. Chem. Soc. 126, 3370 (2004) http://dx.doi.org/10.1021/ja039424u[Crossref]
  • [30] T.D. Nguyen, H.R. Tseng, P.C. Celestre, A.H. Flood, Y. Liu, J.F. Stoddart, J.I. Zink, Proc. Natl. Acad. Sci. USA 102, 10029 (2005) http://dx.doi.org/10.1073/pnas.0504109102[Crossref]
  • [31] T. D. Nguyen, Y. Liu, S. Saha, K.C.F. Leung, J.F. Stoddart, J.I. Zink, J. Am. Chem. Soc. 129, 626 (2007) http://dx.doi.org/10.1021/ja065485r[Crossref]
  • [32] Z. Luo, K. Cai, Y. Hu, L. Zhao, P. Liu, L. Duan, W. Yang, Angew. Chem. 123, 666 (2011) http://dx.doi.org/10.1002/ange.201005061[Crossref]
  • [33] K. Patel, S. Angelos, W.R. Dichtel, A. Coskun, Y.W. Yang, J.I. Zink, J.F. Stoddart, J. Am. Chem. Soc. 130, 2382 (2008) http://dx.doi.org/10.1021/ja0772086[Crossref]
  • [34] R.J. Motekaitis, D. Hayes, A.E. Martell, W.W. Frenier, Can. J. Chem. 57, 1018 (1978) http://dx.doi.org/10.1139/v79-169[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11532-013-0361-x
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.