PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2014 | 12 | 1 | 53-59
Article title

Influence of point defects on the structural and electronic properties of SiC nanotubes

Content
Title variants
Languages of publication
EN
Abstracts
EN
We have performed studies of the structural and electronic properties of functionalized single wall silicon carbide nanotubes (SW-SiCNTs) with chirality (5,5). Our first principles studies are done using density functional theory. The exchange-correlation energies are modeled according to the Hamprecht-Cohen-Tozer-Handy functional in the generalized gradient approximation (HCTH-GGA) and the DNP basis function with double polarization is applied. To determine the most stable geometry, we have applied the minimum energy criterion considering several initial configurations of the hydroxyl (OH) functional group interacting with the single wall SiCNT. In particular, we tested different orientations of the OH adsorbed on the nanotube surface (oriented towards the Si or C atoms) and at the end of the nanotube. Results indicate that the most favorable geometry corresponds to OH adsorption (chemisorption) at the end of the nanotube. The polarity increases yielding better conditions for solubility and dispersion. The work function of the SW-SiCNT-OH is reduced, which in turn favors conditions for field emission properties (FEPs). Finally, the presence of silicon or carbon mono-vacancies in the functionalized nanotubes suggests this may be a good structure to fabricate semiconductor devices [...]
Publisher

Journal
Year
Volume
12
Issue
1
Pages
53-59
Physical description
Dates
published
1 - 1 - 2014
online
27 - 10 - 2013
Contributors
  • Chemical Engineering Faculty, Ciudad Universitaria, Autonomous University of Puebla, San Manuel, Puebla, Codigo, 72570, Mexico, echigoa@yahoo.es
  • Institute of Physics ‘Luis Rivera Terrazas’, Autonomous University of Puebla, P. O. Box J-48, Puebla, 72570, Mexico
References
  • [1] S. Iijima, Nature 354, 56 (1991) http://dx.doi.org/10.1038/354056a0[Crossref]
  • [2] J.Q. Hu, Q. Li, X.M. Meng, C.S. Lee, S.T. Lee, Chem. Mater. 15, 305 (2003) http://dx.doi.org/10.1021/cm020649y[Crossref]
  • [3] Y.J. Xing, Z.H. Xi, Z.Q. Xue, X.D. Zhang, J.H. Song, R.M. Wang, J. Xu, Y. Song, S.L. Zhang, D.P. Yu, Appl. Phys. Lett. 83,1689 (2003)
  • [4] Y.J. Xing, Z.H. Xi, X.D. Zhang, J.H. Song, R.M. Wang, J. Xu, Z.Q. Xue, D.P. Yu, Solid State Commun. 129, 671 (2004) http://dx.doi.org/10.1016/j.ssc.2003.11.049[Crossref]
  • [5] R.M. Wang, Y.J. Xing, J. Xu, D.P. Yu, New J. Phys. 5, 115 (2003) http://dx.doi.org/10.1088/1367-2630/5/1/115[Crossref]
  • [6] Y. Sun, G.M. Fuge, N.A. Fox, D.J. Riley, M.N.R. Ashfold, Adv. Mater. (Weinheim Ger) 17, 2477 (2005) http://dx.doi.org/10.1002/adma.200500726[Crossref]
  • [7] X.Y. Kong, Y. Ding, Z.L. Wang, J. Phys. Chem. B 108, 570 (2004) http://dx.doi.org/10.1021/jp036993f[Crossref]
  • [8] G.S. Wu, T. Xie, X.Y. Yuan, Y. Li, L. Yang, Y.H. Xiao, L.D. Zhang, Solid State Commun. 134, 485 (2005) http://dx.doi.org/10.1016/j.ssc.2005.02.015[Crossref]
  • [9] J.F. Yan, Y.M. Lu, H.W. Liang, Y.C. Liu, B.H. Li, X.W. Fan, J.M. Zhou, J. Cryst. Growth 280, 206 (2005) http://dx.doi.org/10.1016/j.jcrysgro.2005.03.045[Crossref]
  • [10] X.H. Zhang, S.Y. Xie, Z.Y. Jiang, X. Zhang, Z.Q. Tian, Z.X. Xie, R.B. Huang, L.S. Zheng, J. Phys. Chem. B 107, 10114 (2003) http://dx.doi.org/10.1021/jp034487k[Crossref]
  • [11] J.J. Wu, S.C. Liu, C.T. Wu, K.H. Chen, L.C. Chen, Appl. Phys. Lett. 81, 1312 (2002) http://dx.doi.org/10.1063/1.1499512[Crossref]
  • [12] J. Zhang, L. Sun, C. Liao, C. Yan, Chem. Commun. (Cambridge) 262 (2002) [Crossref]
  • [13] C.Z. Tu, X. Hu, Phys. Rev. B 74, 035434 (2006) http://dx.doi.org/10.1103/PhysRevB.74.035434[Crossref]
  • [14] X.H. Sun, C.P. Li, W.K. Wong, N.B. Wong, C.S. Lee, S.T. Lee, B.K. Teo, J. Am. Chem. Soc. 124, 14464 (2002) http://dx.doi.org/10.1021/ja0273997[Crossref]
  • [15] E. Chigo Anota, G. Hernández Cocoletzi, J. Mol. Model. 19, 2335 (2013) http://dx.doi.org/10.1007/s00894-013-1782-3[Crossref]
  • [16] E. Chigo Anota, G. Hernández Cocoletzi, Physica E (2013), DOI: 10.1016/j.physe.2013.08.033 [Crossref]
  • [17] E. Chigo Anota, G. Hernández Cocoletzi, J. Mol. Graph. Model. 42, 115 (2013) http://dx.doi.org/10.1016/j.jmgm.2013.03.007[Crossref]
  • [18] B. Baumeier, P. Krüger, J. Pollmann, Phys. Rev. B 76, 085407 (2007) http://dx.doi.org/10.1103/PhysRevB.76.085407[Crossref]
  • [19] A.D. Boese, N.C. Handy, J. Chem. Phys. 114, 5497 (2001) http://dx.doi.org/10.1063/1.1347371[Crossref]
  • [20] B. Delley, J. Chem. Phys. 92, 508 (1990) http://dx.doi.org/10.1063/1.458452[Crossref]
  • [21] B. Delley, J. Chem. Phys. 113, 7756 (2000) http://dx.doi.org/10.1063/1.1316015[Crossref]
  • [22] A. Klamt, G. Schüürmann, J. Chem. Soc. Perkin Trans. 2, 799 (1993) [Crossref]
  • [23] B. Delley, Mol. Simul. 32, 117 (2006) http://dx.doi.org/10.1080/08927020600589684[Crossref]
  • [24] J. Tomasi, M. Persico, Chem. Rev. 94, 2027 (1994) http://dx.doi.org/10.1021/cr00031a013[Crossref]
  • [25] E. Chigo Anota, R.E. Ramírez Gutiérrez, F.L. Pérez Sánchez, J.F. Sánchez Ramírez, Graphene 1(1), 31 (2013) http://dx.doi.org/10.1166/graph.2013.1008[Crossref]
  • [26] J.B. Foresman, Æ. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd edition (Gaussian Inc., USA, 1996) 70
  • [27] S. Hao, G. Zhou, W. Duan, J. Wu, B.L. Gu, J. Am. Chem. Soc. 128, 8453 (2006) http://dx.doi.org/10.1021/ja057420e[Crossref]
  • [28] D. Golberg, Y. Bando, Appl. Phys. Lett. 79, 415 (2001) http://dx.doi.org/10.1063/1.1385188[Crossref]
  • [29] C. Huei Lee, D. Zhang, Y. Khin Yap, J. Phys. Chem. C 116, 1798 (2012) http://dx.doi.org/10.1021/jp2112999[Crossref]
  • [30] V. Raffa, C. Riggio, M.W. Smith, K.C. Jordan, W. Cao, A. Cuschieri. Technol. Cancer Res. Treat. 11, 459 (2012)
  • [31] J.X. Zhao, Y.H. Ding, J. Phys. Chem. C 112, 20206 (2008) http://dx.doi.org/10.1021/jp805790s[Crossref]
  • [32] Y. Miyamoto, H. Zhang, A. Rubio, Phys. Rev. Lett. 105, 248301 (2010) http://dx.doi.org/10.1103/PhysRevLett.105.248301[Crossref]
  • [33] E. Chigo Anota, H. Hernández Cocoletzi, A. Bautista Hernández, J.F. Sánchez Ramírez, J. Comp. Theor. Nanosci. 8(4), 637 (2011) http://dx.doi.org/10.1166/jctn.2011.1733[Crossref]
  • [34] E. Chigo Anota, Rev. Mex. Fís. 57(4), 309 (2011)
  • [35] A. Rodríguez Juárez, E. Chigo Anota, H. Hernández Cocoletzi, A. Flores Riveros, Appl. Surf. Sci. 268, 259 (2013) http://dx.doi.org/10.1016/j.apsusc.2012.12.075[Crossref]
  • [36] E. Chigo Anota, L.D. Hernández Rodríguez, G. Hernández Cocoletzi, Graphene (2013) (in press)
  • [37] C. Huei Lee, D. Zhang, Y. Khin Yap, J. Phys. Chem. C 116, 1798 (2012) http://dx.doi.org/10.1021/jp2112999[Crossref]
  • [38] S. Li, Semiconductor Physical Electronics, 2nd edition (Springer, USA, 2006) http://dx.doi.org/10.1007/0-387-37766-2[Crossref]
  • [39] A. Zobelli, C.P. Ewels, A. Gloter, G. Seifert, O. Stephan, S. Csillag, C. Colliex, Nano Lett. 6(9), 1955 (2006) http://dx.doi.org/10.1021/nl061081l[Crossref]
  • [40] A.J. Stone, D.J. Wales, Chem. Phys. Lett. 128, 501 (1986) http://dx.doi.org/10.1016/0009-2614(86)80661-3[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11532-013-0357-6
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.