Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 11 | 12 | 2005-2011

Article title

Corrosion depth profiles of nitrided titanium alloy in acidified sulphate solution

Content

Title variants

Languages of publication

EN

Abstracts

EN
Thick (400 µm) glow-discharge nitrided layers, TiN+Ti2N + αTi(N) type, have been produced on the Ti-1Al-1Mn titanium alloy. Using a progressive thinning method, the polarization characteristics at different depths of nitrided layers have been measured. From the plots of obtained potentiodynamic polarization curves the depth profiles of characteristic anodic and cathodic currents (at potentials corresponding to (a) hydride formation, (b) hydrogen evolution, (c) primary passivation, (d) oxygen evolution and (e) secondary passivation) as well as polarization resistance have been determined in 0.5 M Na2SO4 solution acidified to pH = 2. The anomalously high slope of the polarization curves in the cathodic region has been ascribed to the formation of titanium hydride. It has been shown that outer nitrided layers (up to 25 µm) exhibit excellent acid corrosion resistance owing to strong inhibition of the anodic process by TiN phase. Corrosion resistance of deeper situated layers gradually decreases and at depths of 250–370 µm the corrosion process is accelerated by presence of TiO2 precipitations. Nitrided layers, unlike the alloy core, allow oxygen evolution on the oxy-nitrided surface at potential of +1.6 V and at more positive potentials gradual transformation of the surfacial film into TiO2 takes place. Secondary passivation on nitrided titanium is less efficient than that in the absence of Ti-N species. [...]

Publisher

Journal

Year

Volume

11

Issue

12

Pages

2005-2011

Physical description

Dates

published
1 - 12 - 2013
online
26 - 9 - 2013

Contributors

  • Division of Chemistry, Faculty of Materials Engineering and Applied Physics, Czestochowa University of Technology, 42-200, Czestochowa, Poland
author
  • Division of Chemistry, Faculty of Materials Engineering and Applied Physics, Czestochowa University of Technology, 42-200, Czestochowa, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, PL-02 507, Warszawa, Poland

References

  • [1] P.M. Perillo, Corrosion 62, 182 (2006) http://dx.doi.org/10.5006/1.3278263[Crossref]
  • [2] D. Starosvetsky, I. Gotman, Biomaterials 22, 1853 (2001) http://dx.doi.org/10.1016/S0142-9612(00)00368-9[Crossref]
  • [3] A. Pankiew, W. Bunjongpru, N. Somwang, S. Porntheeraphat, S. Sopitpan, J. Nukaew, C. Hruanun, A. Poyai, J. Microsc. Soc.-Thailand 24(2), 103 (2010)
  • [4] J. Piippo, B. Elsener, H. Bohni, Surf. Coat. Tech. 61, 43 (1993) http://dx.doi.org/10.1016/0257-8972(93)90200-8[Crossref]
  • [5] B.N. Arzamasov, L.G. Kirichenko, A.N. Kuznetsov, T.V. Soloveva, Met. Sci. Heat Treat. 40, 378 (1998) http://dx.doi.org/10.1007/BF02466244[Crossref]
  • [6] S. Szmukler-Moncler, M. Bischof, R. Nedir, M. Ermrich, Chin, Oral Impl. Res. 21, 944 (2010)
  • [7] K. Videm, S. Lamolle, M. Monjo, J.E. Ellingsen, S.P. Lyngatadaas, H.J. Haugen, Appl.Suf. Sci. 255, 3011 (2008) http://dx.doi.org/10.1016/j.apsusc.2008.08.090[Crossref]
  • [8] A. Zhecheva, W. Sha, S. Malinov, A. Long, Surf. Coat. Tech. 200, 2192 (2005) http://dx.doi.org/10.1016/j.surfcoat.2004.07.115[Crossref]
  • [9] H.J. Goldschmidt, Interstitial Alloys (Butterworths, London, 1967)
  • [10] S. Malinov, A. Zhecheva, W. Sha, Proc. 13th IFHTSE Congress (ASM International, Materials Park, OH, 2003) 344
  • [11] A. Czyrska-Filemonowicz, P.A. Buffat, M. Lucki, T. Moskalewicz, W. Rakowski, J. Lekki, T. Wierzchon, Acta Mater. 53(16), 4367 (2005) http://dx.doi.org/10.1016/j.actamat.2005.05.035[Crossref]
  • [12] E. Czarnowska, M. Ossowski, J. Morgiel, T. Wierzchon, J. Nanosci. Nanotechnol. 11, 8917 (2011) http://dx.doi.org/10.1166/jnn.2011.3474[Crossref]
  • [13] T.P. Hoar, Platinum Met. Rev. 4, 59 (1960)
  • [14] V.A. Lavrenko, V.A. Shvets, N.V. Boshitskaya, G.N. Makarenko, Powder Metal. Met. Ceram. 40, 630 (2001) http://dx.doi.org/10.1023/A:1015296323497[Crossref]
  • [15] A.I. Shcherbakov, Zashchita Met. 38, 174 (2002) (in Russian)
  • [16] M.C. Burrell, N.R. Armstrong, Langmuir 2, 37 (1986) http://dx.doi.org/10.1021/la00067a006[Crossref]
  • [17] I. Gurappa, Mater. Charact. 51, 131 (2003) http://dx.doi.org/10.1016/j.matchar.2003.10.006[Crossref]
  • [18] M.J. Donachie, Jr., Titanium - A Technical Guide, 2nd edition (ASM International, Materials Park, USA, 2000)
  • [19] M.J. Munoz-Portero, J. Garcia-Anton, J.L. Guinon, R. Leiva_Garcia, Corros. Sci. 53, 1440 (2011) http://dx.doi.org/10.1016/j.corsci.2011.01.013[Crossref]
  • [20] A.I. Shcherbakov, I.V. Kasatkina, Zashchita Met. 37, 435 (2001) (in Russian)
  • [21] M.S. Khoma, O.M. Romaniv, O.I. Kuntyi, A.I. Tymchyshyn, Mater. Sci. 36, 780 (2000) http://dx.doi.org/10.1023/A:1011332513343[Crossref]
  • [22] R. Karpagavalli, A. Zhou, P. Chellamuthu, K. Nguyen, J. Biomed. Mater. Res., Part A 83A, 1087 (2007) http://dx.doi.org/10.1002/jbm.a.31447[Crossref]
  • [23] L.H. Li, Y.M. Kong, H.W. Kim, Y.W. Kim, H.E. Kim, S.J. Heo, J.Y. Koak, Biomaterials 25, 2867 (2004) http://dx.doi.org/10.1016/j.biomaterials.2003.09.048[Crossref]
  • [24] H.W. Kim, Y.H. Koh, L.H. Li, S. Lee, H.E. Kim, Biomaterials 25, 2533 (2004) http://dx.doi.org/10.1016/j.biomaterials.2003.09.041[Crossref]
  • [25] W. Han, Y. Wang, Y. Zheng, Adv. Mater. Res. 79–82, 389 (2009) http://dx.doi.org/10.4028/www.scientific.net/AMR.79-82.389[Crossref]
  • [26] R. Carbone, I. Marangi, A. Zanardi, L. Giorgetti, E. Chierici, G. Berlanda, A. Podestà, F. Fiorentini, G. Bongiorno, P. Piseri, P.G. Pelicci, P. Milani, Biomaterials 27, 3221 (2006) http://dx.doi.org/10.1016/j.biomaterials.2006.01.056[Crossref]
  • [27] W. Wilhelmsen, A.P. Grande, Electrochim. Acta 35, 1913 (1990) http://dx.doi.org/10.1016/0013-4686(90)87100-G[Crossref]
  • [28] A. Rauscher, Z. Lukacs, Mater. Corros. 39, 280 (1988) http://dx.doi.org/10.1002/maco.19880390603[Crossref]
  • [29] Z.A. Foroulis, Mater. Corros. 30, 477 (1979) http://dx.doi.org/10.1002/maco.19790300703[Crossref]
  • [30] M. Stern, H. Wissenberg, J. Electrochem. Soc. 106, 755 (1959) http://dx.doi.org/10.1149/1.2427492[Crossref]
  • [31] M. Stern, H. Wissenberg, J. Electrochem. Soc. 106, 759 (1959) http://dx.doi.org/10.1149/1.2427493[Crossref]
  • [32] K. Jagielska-Wiaderek, H. Bala, P. Wieczorek, J. Rudnicki, D. Klimecka-Tatar, Arch. Metall. Mater. 54, 115 (2009)
  • [33] K. Jagielska-Wiaderek, H. Bala, P. Wieczorek, J. Rudnicki, Arch. Metall. Mater. 55, 515 (2010)
  • [34] K. Jagielska-Wiaderek, Arch. Metall. Mater. 57, 646 (2012)
  • [35] Shreir’s Corrosion, Electrochemical Methods, 4th edition (Elsevier, UK, 2010) Vol. 2, 1358
  • [36] H. Bala, L. Adamczyk, E. Owczarek, T. Gruetzner, B.Ch. Seyfang, Ochr. przed Korozja 55, 460 (2012) (in Polish)
  • [37] A.N. Krasilshchikov, Zh. Fiz. Khim. 37, 531 (1963) (in Russian)
  • [38] M.E. Lyons, R.L. Doyle, M.P. Brandon. Phys. Chem. Chem. Phys. 13(48), 21530 (2011) http://dx.doi.org/10.1039/c1cp22470k[Crossref]
  • [39] Shreir’s Corrosion, Corrosion of Titanium and its Alloys, 4th edition (Elsevier, UK, 2010) Vol. 3, 2042

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11532-013-0342-0
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.