PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2013 | 11 | 9 | 1481-1491
Article title

Characterization of Slovenian coal and estimation of coal heating value based on proximate analysis using regression and artificial neural networks

Content
Title variants
Languages of publication
EN
Abstracts
EN
Abstract Chemical composition of Slovenian coal has been characterised in terms of proximate and ultimate analyses and the relations among the chemical descriptors and the higher heating value (HHV) examined using correlation analysis and multivariate data analysis methods. The proximate analysis descriptors were used to predict HHV using multiple linear regression (MLR) and artificial neural network (ANN) methods. An attempt has been made to select the model with the optimal number of predictor variables. According to the adjusted multiple coefficient of determination in the MLR model, and alternatively, according to sensitivity analysis in ANN developing, two descriptors were evaluated by both methods as optimal predictors: fixed carbon and volatile matter. The performances of MLR and ANN when modelling HHV were comparable; the mean relative difference between the actual and calculated HHV values in the training data was 1.11% for MLR and 0.91% for ANN. The predictive ability of the models was evaluated by an external validation data set; the mean relative difference between the actual and predicted HHV values was 1.39% in MLR and 1.47% in ANN. Thus, the developed models could be appropriately used to calculate HHV. Graphical abstract [...]
Publisher

Journal
Year
Volume
11
Issue
9
Pages
1481-1491
Physical description
Dates
published
1 - 9 - 2013
online
29 - 6 - 2013
Contributors
author
  • Regional Technological Centre Zasavje, Chemical-Technological Laboratory, 1420, Trbovlje, Slovenia, darjakavsek@gmail.com
  • Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, SK-917 01, Trnava, Slovakia
author
  • CIVIS d.o.o., 2000, Maribor, Slovenia
  • Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000, Maribor, Slovenia
  • Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, SK-917 01, Trnava, Slovakia
References
  • [1] A.R. Shirazi, O. Lindqvist, Fuel 72, 125 (1993) http://dx.doi.org/10.1016/0016-2361(93)90387-H[Crossref]
  • [2] S. Kucukbayrak, B. Durus, A.E. Mericboyu, E. Kadioglu, Fuel 70, 979 (1991) http://dx.doi.org/10.1016/0016-2361(91)90054-E[Crossref]
  • [3] A.R. Shirazi, O. Börtin, L. Eklund, O. Lindqvist, Fuel 74, 247 (1995) http://dx.doi.org/10.1016/0016-2361(95)92661-O[Crossref]
  • [4] A.V. Akkaya, Fuel Process Technol. 90, 165 (2009) http://dx.doi.org/10.1016/j.fuproc.2008.08.016[Crossref]
  • [5] A. Demirbaş, Fuel 76(5), 431 (1997) http://dx.doi.org/10.1016/S0016-2361(97)85520-2[Crossref]
  • [6] T. Cordero, F. Marquez, J. Rodriguez-Mirasol, J.J. Rodriguez, Fuel 80, 1567 (2001) http://dx.doi.org/10.1016/S0016-2361(01)00034-5[Crossref]
  • [7] J. Parikh, S.A. Channiwala, G.K. Ghosal, Fuel 84, 487 (2005) http://dx.doi.org/10.1016/j.fuel.2004.10.010[Crossref]
  • [8] A.K. Majumder, R. Jain, P. Benerjee, J.P. Barnwal, Fuel 87, 3077 (2008) http://dx.doi.org/10.1016/j.fuel.2008.04.008[Crossref]
  • [9] S.U. Patel et al., Fuel 86, 334 (2007) http://dx.doi.org/10.1016/j.fuel.2006.07.036[Crossref]
  • [10] S. Chehreh Chelgani, Sh. Mesroghli, J.C. Hower, Int. J. Coal Geol. 83, 31 (2010) http://dx.doi.org/10.1016/j.coal.2010.03.004[Crossref]
  • [11] Sh. Mesroghli, E. Jorjani, S. Chehreh Chelgani, Int. J. Coal Geol. 79, 49 (2009) http://dx.doi.org/10.1016/j.coal.2009.04.002[Crossref]
  • [12] A.H. Bagherieh, J.C. Hower, A.R. Bagherieh, E. Jorjani, Int. J. Coal Geol. 73, 130 (2008) http://dx.doi.org/10.1016/j.coal.2007.04.002[Crossref]
  • [13] A. Saptoro, H.M. Yao, M.O. Tadé, H.B. Vuthaluru, Chemom. Intell Lab. Syst. 94, 149 (2008) http://dx.doi.org/10.1016/j.chemolab.2008.07.007[Crossref]
  • [14] S. Chehreh Chelgani, J.C. Hower, E. Jorjani, Sh. Mesroghli, A.H. Bagherieh, Fuel Process Technol. 89, 13 (2008) http://dx.doi.org/10.1016/j.fuproc.2007.06.004[Crossref]
  • [15] C.M. Bishop, Neural Networks for Pattern Recognition (Clarendon Press, Oxford, New York, 1995)
  • [16] S. Haykin, Neural Networks: A comprehensive Foundation (Pearson Education, Dehli, 1999)
  • [17] J. Zupan, J. Gasteiger, Neural Networks for Chemists: An introduction (VCH, New York, 1993)
  • [18] BD Ripley, Pattern Recognition and Neural Networks (University Press, Cambridge, 1996)
  • [19] D. Svozil, V. Kvasnička, J. Pospíchal, Chemom. Intell Lab. Syst. 39, 43 (1997) http://dx.doi.org/10.1016/S0169-7439(97)00061-0[Crossref]
  • [20] DIN 51900-1:2000-04 Prüfung fester und flüssiger Brennstoffe - Bestimmung des Brennwertes mit dem Bomben-Kalorimeter und Berechnung des Heizwertes-Teil 1: Allgemeine Angaben, Grundgeräte, Grundverfahren (Beuth Verlag GmbH, Berlin, Germany, 2000) (in German)
  • [21] DIN 51900-3:2005-01 Prüfung fester und flüssiger Brennstoffe - Bestimmung des Brennvertes mit dem Bomben Kalorimeter und Berechnung des Heizwertes-Teil 3: Verfahren mit adiabatischen Mantel (Beuth Verlag GmbH, Berlin, Germany, 2005) (in German)
  • [22] ASTM D5142-04 Standard Test Method for Proximate Analysis of the Analysis Sample of Coal and Coke by Instrumental Procedure (ASTM International, West Conshohocken, PA, USA, 2004)
  • [23] ASTM D5373-93(2002) Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal and Coke (ASTM International, West Conshohocken, PA, USA, 2002)
  • [24] ASTM D4239-04 Standard Test Methods for Sulphur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion Method (ASTM International, West Conshohocken, PA, USA, 2004)
  • [25] ASTM D3302/ D3302 M -12 Standard Test Method for Total Moisture in Coal (ASTM International, West Conshohocken, PA, USA, 2012)
  • [26] K. Varmuza, P. Filzmoser, Introduction to Multivariate Statistical Analysis in Chemometrics (Taylor & Francis-CRC Press, Boca Raton, FL, USA, 2008)
  • [27] C.A. Palmer, E. Tuncah, K.O. Dennen, T.C. Coburn, R.B. Finkelman, Int J Coal Geol 60, 85 (2004) http://dx.doi.org/10.1016/j.coal.2004.05.001[Crossref]
  • [28] W.P. Gardiner, Statistical Analysis Methods for Chemists: A Software-based Approach (The Royal Society of Chemistry, Cambridge, 1997)
  • [29] D.L. Massart, B.G.M. Vandeginste, L.M.C. Buydens, S. De Jong, P.J. Lewi, J.S. Verbeke, Handbook of Chemometrics and Qualimetrics: Part A (Elsevier, Amsterdam, 1997)
  • [30] P. Gemperline, Practical Guide to Chemometrics, 2nd edition (Taylor & Francis-CRC Press, Boca Raton, New York, 2006) http://dx.doi.org/10.1201/9781420018301[Crossref]
  • [31] R.G. Brereton, Chemometrics: Data Analysis for the Laboratory and Chemical Plant (John Wiley.&Sons, Ltd, Chichester, 2003)
  • [32] R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics: Volumes I & II, 2nd edition (Willey-VCH, Weinheim, 2009) http://dx.doi.org/10.1002/9783527628766[Crossref]
  • [33] Yeh I-Cheng, Wei-Lun Cheng, Neurocomputing 73, 2225 (2010) http://dx.doi.org/10.1016/j.neucom.2010.01.011[Crossref]
  • [34] J.G. Speight, Handbook of Coal Analysis (John Wiley.&Sons, Inc, New Yersey, 2005) http://dx.doi.org/10.1002/0471718513[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11532-013-0280-x
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.