PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2013 | 11 | 9 | 1505-1517
Article title

Modelling and optimization of chromiumIII biosorption on soybean meal

Content
Title variants
Languages of publication
EN
Abstracts
EN
Abstract In this investigation a waste biological material, soybean meal, was applied as a biosorbent for heavy metal ions (CrIII). The diffusive Webber-Morris model and the pseudo-II-order model suitably described the kinetics of CrIII ions binding on soybean meal. The Langmuir-Freundlich equation was valid for the description of the isotherm. Inductively coupled plasma optical emission spectroscopy (ICP-OES), FTIR and scanning electron microscopy with an energy dispersive X-ray analytical system (SEM-EDX) were used in order to identify the mechanism of the metal ions binding. The analysis of the composition of the enriched soybean meal confirmed the contribution of ion exchange in the biosorption process. Three-variable-three-level Box-Behnken design was used to determine the optimal conditions for biosorption of CrIII on soybean meal. The optimal conditions for predicted maximum Cr3+ uptake (61.07 mg g−1) by soybean meal were estimated by Matlab and established as temperature of 38.04°C, initial metal concentration 500 mg L−1 and biosorbent dosage 1 g L−1. Graphical abstract [...]
Publisher

Journal
Year
Volume
11
Issue
9
Pages
1505-1517
Physical description
Dates
published
1 - 9 - 2013
online
29 - 6 - 2013
Contributors
  • Department of Chemistry, Wroclaw University of Technology, Wroclaw, 50-373, Poland
  • Institute of Inorganic Technology and Mineral Fertilizers, Wroclaw University of Technology, 50-372, Wroclaw, Poland
author
  • Department of Chemistry, Wroclaw University of Technology, Wroclaw, 50-373, Poland
  • Laboratory of Electron Microscopy, Wroclaw University of Environmental and Life, Sciences, 50-631, Wroclaw, Poland
References
  • [1] W. Zhang, L. Chen, D. Liu, Appl. Microbiol. Biotechnol. 93, 1305 (2012) http://dx.doi.org/10.1007/s00253-011-3454-5[Crossref]
  • [2] D.R. Lide, Handbook of Chemistry and Physics (CRC press, Boca Raton, Florida, USA 2006)
  • [3] R.A.K. Rao, F. Rehman, J. Hazard. Mater. 181, 405 (2010) http://dx.doi.org/10.1016/j.jhazmat.2010.05.025[Crossref]
  • [4] S. Xu, L. Chen, J. Li, Y. Guan H. Lu, J. Hazard. Mater. 237, 347 (2012) http://dx.doi.org/10.1016/j.jhazmat.2012.08.058[Crossref]
  • [5] D.H.K. Reddy, D.K.V. Ramana, K. Seshaiah, A.V.R. Reddy, Desalination 268, 150 (2011) http://dx.doi.org/10.1016/j.desal.2010.10.011[Crossref]
  • [6] A. Witek-Krowiak, R.G. Szafran, S. Modelski, Desalination 265, 126 (2011) http://dx.doi.org/10.1016/j.desal.2010.07.042[Crossref]
  • [7] A. Witek-Krowiak, Chem. Eng. J. 171, 976 (2011) http://dx.doi.org/10.1016/j.cej.2011.04.048[Crossref]
  • [8] D.H.K. Reddy, K. Seshaiah, A.V.R. Reddy, et al., Carbohyd. Polym. 88, 1077 (2012) http://dx.doi.org/10.1016/j.carbpol.2012.01.073[Crossref]
  • [9] A. Witek-Krowiak, Chem. Eng. J. 192, 13 (2012) http://dx.doi.org/10.1016/j.cej.2012.03.075[Crossref]
  • [10] A. Witek-Krowiak, M. Mitek, K. Pokomeda, et al., Chem. Proc. Eng. 31, 421 (2010)
  • [11] I. Villaescusa, N. Fiol, J. Poch, et al., Desalination 270, 135 (2011) http://dx.doi.org/10.1016/j.desal.2010.11.037[Crossref]
  • [12] N. Das, Hydrometallurgy 103, 180 (2010) http://dx.doi.org/10.1016/j.hydromet.2010.03.016[Crossref]
  • [13] Z. Aksu, Ö. Tunç, Process. Biochem. 40, 831 (2005) http://dx.doi.org/10.1016/j.procbio.2004.02.014[Crossref]
  • [14] N. Prado, J. Ochoa, A. Amrane, Process Biochem. 44, 1302 (2009) http://dx.doi.org/10.1016/j.procbio.2009.08.006[Crossref]
  • [15] A. Witek-Krowiak, D.H.K. Reddy, Bioresour. Technol. 127, 350 (2013) http://dx.doi.org/10.1016/j.biortech.2012.09.072[Crossref]
  • [16] G.E.P. Box, D.W. Behnken, Technometrics 2, 455 (1960) http://dx.doi.org/10.1080/00401706.1960.10489912[Crossref]
  • [17] N.S. Kumar, K. Min, Chem. Eng. J. 168, 562 (2011) http://dx.doi.org/10.1016/j.cej.2011.01.023[Crossref]
  • [18] M.A. Wahab, S. Jellali, N. Jedidi, Bioresour. Technol. 101, 5070 (2010) http://dx.doi.org/10.1016/j.biortech.2010.01.121[Crossref]
  • [19] A.M. Abdel -Aty, N.S. Ammar, H.H. Abdel Ghafar, R.K.J. Ali, Advanced. Res. (in press)
  • [20] S. Lagergren, K. Sven, Vetenskapsakad. Handl. 24, 1 (1898)
  • [21] Y.S. Ho, D.A.J. Wase, C.F. Forster, Environm. Technol. 17, 71 (1996) http://dx.doi.org/10.1080/09593331708616362[Crossref]
  • [22] Y. Liu, L. Shen, Biochem. Eng. J. 38, 390 (2008) http://dx.doi.org/10.1016/j.bej.2007.08.003[Crossref]
  • [23] W.J. Weber, J.C.J. Morris, Sanitary Eng. Div. Proceed. Am. Soc. Civil. Eng. 89, 31 (1963)
  • [24] H. Qiu, L. Lv, B. Pan, Q. Zhang, W. Zhang, Q.J. Zhang, Zhejiang Univ. Sci. A. 5, 716 (2009) http://dx.doi.org/10.1631/jzus.A0820524[Crossref]
  • [25] I.J. Langmuir, Am. Chem. Soc. 38, 2221 (1916) http://dx.doi.org/10.1021/ja02268a002[Crossref]
  • [26] H.M.F. Freundlich, Z. Phys. Chem. 57(A), 385 (1906)
  • [27] R.J. Sips, Chem. Phys. 16, 490 (1948)
  • [28] O. Redlich, D.L.J. Peterson, Phys. Chem. 63, 1024 (1959) http://dx.doi.org/10.1021/j150576a611[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11532-013-0274-8
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.