PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2013 | 11 | 9 | 1439-1446
Article title

In vitro bioactivity of Polyurethane/85S Bioglass composite scaffolds

Content
Title variants
Languages of publication
EN
Abstracts
EN
In the present work Polyurethane (PU)/Bioglass (BG) composite materials were synthesized with different content of BG (10 and 20 mol.%) as filler. The 85S Bioglass was synthesized via polystep sol-gel method. The chemical composition of BG is 85SiO2-10CaO-5P2O5 (wt.%). The synthesis of PU was carried out by a two-step polyaddition reaction. The 85S BG was added in situ during the polymerization reaction. In vitro bioactivity of the prepared composites was examined in the presence of 1.5 SBF for 7 days in static conditions. The structure of synthesized PU/BG composites before and after in vitro test was determined by XRD, FTIR and SEM. XRD of the samples before in vitro test proved that the phase of γCa2P2O7 in the PU/20BG is visible. FTIR revealed the presence of urethane bond between OH-(from BG) and NCO groups (from PU). Based on FTIR results after in vitro test in 1.5 SBF solutions, A/B-carbonate containing hydroxyapatite (CO3HA) was formed. XRD proved that HA was formed on the surface of the samples, but Ca2P2O7 does not undergo any changes in the 1.5 SBF solution. SEM depicted the nano-HA agglomerated in spherical particles after immersion in 1.5 SBF for 7 days.
Publisher

Journal
Year
Volume
11
Issue
9
Pages
1439-1446
Physical description
Dates
published
1 - 9 - 2013
online
29 - 6 - 2013
Contributors
  • Department of Fundamental Chemical Technology, University of Chemical Technology and Metallurgy, Sofia, 1756, Bulgaria, l_radev@abv.bg
  • Textile and Leather Department, University of Chemical Technology and Metallurgy, Sofia, 1756, Bulgaria
  • Department of Silicate Technology, University of Chemical Technology and Metallurgy, Sofia, 1756, Bulgaria
References
  • [1] A. Boccaccini et al., Comp. Sci. Techn. 70, 1764 (2010) http://dx.doi.org/10.1016/j.compscitech.2010.06.002[Crossref]
  • [2] D.C. Fredericks et al., Key Eng. Mater. 218–220, 409 (2002) http://dx.doi.org/10.4028/www.scientific.net/KEM.218-220.409[Crossref]
  • [3] C.E. Wilson et al., Biomaterials 27(3), 302 (2006) http://dx.doi.org/10.1016/j.biomaterials.2005.06.041[Crossref]
  • [4] D. Arcos et al., Acta Biomaterialia 7(7), 2952 (2011) http://dx.doi.org/10.1016/j.actbio.2011.02.012[Crossref]
  • [5] M. Alcaide et al., Acta Biomaterialia 6(3), 892 (2010) http://dx.doi.org/10.1016/j.actbio.2009.09.008[Crossref]
  • [6] H-S. Yun, J-W. Park, S-H. Kim, Y-J. Kim, J-H. Jang, Acta Biomaterialia 7, 2651 (2011) http://dx.doi.org/10.1016/j.actbio.2011.02.014[Crossref]
  • [7] A. Garca, M. Cicundez, I. Izquierdo-Barba, D. Arcos, Chem. Mater. 21(22) 5474 (2009) http://dx.doi.org/10.1021/cm9022776[Crossref]
  • [8] F. Baino, E. Verné, Ch. Vitale-Brovarone, J. Mater. Sci.: Mater. Med. 20, 2189 (2009) http://dx.doi.org/10.1007/s10856-009-3787-0[Crossref]
  • [9] K. Bouchemal et al., International Journal of Pharmaceutics 269(1), 89 (2004) http://dx.doi.org/10.1016/j.ijpharm.2003.09.025[Crossref]
  • [10] M. Bil et al., Biomed. Mater. 2(2), 93 (2007) http://dx.doi.org/10.1088/1748-6041/2/2/006[Crossref]
  • [11] M.-N. Huang, Y.-L. Wang, Y.-F. Luo, J. Biomed. Sci. Eng. 2, 36 (2009) http://dx.doi.org/10.4236/jbise.2009.21007[Crossref]
  • [12] D.M. Yunos, O. Bretcanu, A.R. Boccaccini, J. Mater. Sci. 43, 4433 (2008) http://dx.doi.org/10.1007/s10853-008-2552-y[Crossref]
  • [13] J.L. Ryszkowska, M. Auguścik, A. Sheikh, A.R. Boccaccini, Comp. Sci. Techn. 70, 1894 (2010) http://dx.doi.org/10.1016/j.compscitech.2010.05.011[Crossref]
  • [14] Zh. Dong, Y. Li, Q. Zou, Appl. Surf. Sci. 255(12), 6087 (2009) http://dx.doi.org/10.1016/j.apsusc.2009.01.083[Crossref]
  • [15] G. Ciobanu, D. Ignat, C. Luca, Chem. Bull. POLITECHNIKA Univ. Timisoara, 54(68), 57 (2009)
  • [16] A. Asefnejad, A. Behnamghader, M. Khorasani, B. Farsadzadeh, Int. J. Nanomed. 6, 93 (2011) http://dx.doi.org/10.2147/IJN.S13385[Crossref]
  • [17] A.B. Martinez-Valencia et al., Int. J. Phys. Sci. 6(11), 2731 (2011)
  • [18] Q. Liu, J.R. Wijn, D. Bakker, C.A. Blitterswijk, J. Mater. Sci.: Mater. Med. 7(9), 551 (1996) http://dx.doi.org/10.1007/BF00122178[Crossref]
  • [19] G. Ch. Dong et al., Biomaterials 22(23), 3179 (2001) http://dx.doi.org/10.1016/S0142-9612(01)00070-9[Crossref]
  • [20] A.S. Khan et al., Acta Biomaterialia 4(5), 1275 (2008) http://dx.doi.org/10.1016/j.actbio.2008.04.016[Crossref]
  • [21] G. Falini, S. Fermani, B. Palazzo, N. Roveri, J. Biomed. Mater. Res. A87(2), 470 (2008) http://dx.doi.org/10.1002/jbm.a.31771[Crossref]
  • [22] K. Gorna, S. Gogolewski, Polym. Degrad. Stabil. 75(1), 113 (2002) http://dx.doi.org/10.1016/S0141-3910(01)00210-5[Crossref]
  • [23] E. Ayres, R.L. Oréfice, M.I. Yoshida, Eur. Polym. J. 43(8), 3510 (2007) http://dx.doi.org/10.1016/j.eurpolymj.2007.05.014[Crossref]
  • [24] G. Wang, Ch. Zhang, X. Guo, Zh. Ren, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 69(2), 407 (2008) http://dx.doi.org/10.1016/j.saa.2007.04.014[Crossref]
  • [25] J. Guan, M.S. Sacks, E.J. Beckman, W.R. Wagner, J. Biomed. Mater. Res., A 61(3), 493 (2002) (26) http://dx.doi.org/10.1002/jbm.10204[Crossref]
  • [26] A.K. Mishra, D.K. Chattopadhyay, B. Sreedhar, K. Raju, Prog. Org. Coat. 55(3), 231 (2006) http://dx.doi.org/10.1016/j.porgcoat.2005.11.007[Crossref]
  • [27] L-F. Wang, Polymer 48, 894 (2007) http://dx.doi.org/10.1016/j.polymer.2006.11.063[Crossref]
  • [28] Ch. Chen et al., Polymer 46, 11849 (2005) http://dx.doi.org/10.1016/j.polymer.2005.06.127[Crossref]
  • [29] M.J. Forrest, Chemical Chracterization of Polyurethanes (Papra Review Reports, UK, 2001)
  • [30] H. Aguiar, J. Serra, P. González, B. León, J. Non-Cryst. Solids 355, 475 (2009) http://dx.doi.org/10.1016/j.jnoncrysol.2009.01.010[Crossref]
  • [31] F. Galeener, P.H. Gaskell, J.M. Parker, E.A. Davis, In: P.H. Gaskell, J.M. Parker, E.A. Davis (Eds.), The Structure of Non-Crystalline Materials (Taylor and Francis, London, 1982) 337
  • [32] J. Serra et al. J. Non-Cryst. Solids 332, 20 (2003) http://dx.doi.org/10.1016/j.jnoncrysol.2003.09.013[Crossref]
  • [33] H.Y. Jung et al., J. Non-Cryst Solids 351, 372 (2005) http://dx.doi.org/10.1016/j.jnoncrysol.2005.01.004[Crossref]
  • [34] R.S. Pryce, L.L. Hench, J. Mater. Chem. 14, 2303 (2004) http://dx.doi.org/10.1039/b400922c[Crossref]
  • [35] E.SS. Jang et al., J. Chem. Soc. Pak. 33(4), 549 (2011)
  • [36] D. Tang, L. Quang, Zh. Jin, L. Zhao, J. Mater. Sci.Technol. 21(4), 58 (2005) [Crossref]
  • [37] Q. Zhao et al. J. Non-Cryst. Solids 358(2), 229 (2012) http://dx.doi.org/10.1016/j.jnoncrysol.2011.09.020[Crossref]
  • [38] N.S. Chickerur, M.S. Tung, W.E. Brown, Calcif. Tissue Int. 32(1), 55 (1980) http://dx.doi.org/10.1007/BF02408521[Crossref]
  • [39] H. Lin, W.-S. Seo, K. Kuwabara, K. Koumoto, J. Ceram. Soc. Jpn. 104(4), 291 (1996) http://dx.doi.org/10.2109/jcersj.104.291[Crossref]
  • [40] H. Ou-Yang, E.P. Paschalis, A.L. Boskey, R. Mendelsohn, Biopolymers 57(3), 129 (2000) http://dx.doi.org/10.1002/(SICI)1097-0282(2000)57:3<129::AID-BIP1>3.0.CO;2-O[Crossref]
  • [41] D.G. Nelson, J.D. Featherstone, Calcif. Tissue Int. 34, S69 (1982)
  • [42] P. Regnier et al., American Mineralogist 79, 809 (1994)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11532-013-0273-9
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.