Preferences help
enabled [disable] Abstract
Number of results
2013 | 11 | 7 | 1163-1171
Article title

Formation and properties of copper chalcogenides thin films on polymers formed using sodium telluropentathionate

Title variants
Languages of publication
The preparative conditions were optimized to get chalcogens layers on the polymer - polyamide PA surface by sorption at room temperature using sodium telluropentathionate, Na2TeS4O6. Further interaction of chalcogenized dielectric with copper’s (I/II) salt solution leads to the formation of mixed CuxSy-CuxTey layers. Optical, electrical and surface characteristics of the layers are highly controlled by the deposition parameters. The stoichiometry of these layers was established by UV-Visible and AA spectrometry. Optical absorption (transmittance) experiments show the samples are of high optical quality. The band gaps of thin films were obtained from their optical absorption spectra, which were found in the range of 1.44–2.97 eV. XRD was used in combination with AFM to characterize chalcogenides layers’ structural features. XRD analysis confirmed the formation of mixed copper chalcogenides’ layers in the surface of PA with binary phases such as Cu2Te, Cu3.18Te2, copper telluride, Cu2.72Te2, vulcanite, CuTe, anilite, Cu7S4 and copper sulfide, Cu1.8S. The crystallite sizes of thin films calculated by the Scherer formula were found to be in the range of 3.07–13.53 nm for CuxSy crystallites and 4.06–20.79 nm for CuxTey crystallites. At room temperature an electrical resistance of CuxSy-CuxTey layers varies from 3.0×103 kΩ□−1 to 1.0 kΩ□−1. [...]
Physical description
1 - 7 - 2013
26 - 4 - 2013
  • Department of Inorganic Chemistry Faculty of Chemical Technology, Kaunas University of Technology, LT-50254, Kaunas, Lithuania
  • Department of Inorganic Chemistry Faculty of Chemical Technology, Kaunas University of Technology, LT-50254, Kaunas, Lithuania
  • [1] F.A. Devillanova, Handbook of Chalcogen Chemistry, New Perspectives in Sulfur, Selenium and Tellurium (RSC Publishing, Thomas Graham House, Cambridge, 2007) [WoS]
  • [2] J.B. Chaudhari, N.G. Deshpande, Y.G. Gudage, A. Ghosh, V.B. Huse, Ramphal Sharma, Appl. Surf. Sc. 254(21), 6810 (2008)[Crossref]
  • [3] B. Krishnan, A. Arato, E. Cardenas, T.K. Das Roy, G.A. Castillo, Appl. Surf. Sc. 54, 3200 (2008)[Crossref]
  • [4] H.W. Schock, R. Noufi, Prog. Photovolt. Res. Appl. 8, 151 (2000)<151::AID-PIP302>3.0.CO;2-Q[Crossref]
  • [5] S Martinuzzi, Sol. Cells 5(3), 243 (1982)[Crossref]
  • [6] F. Pfister, W. H. Bloss, Sol. Cells 12(1–2), 155 (1984)[Crossref]
  • [7] V.M. Garcia, P.K. Nair, M.T.S. Nair, Journal of Crystal Growth 203(1–2), 113 (1999)[Crossref]
  • [8] S.J. Fonash, Solar Cells Device Physics (Academic Press, San Diego, 1981)
  • [9] P. Sheldon, Prog. Photovolt. Res. Appl. 8, 77 (2000)<77::AID-PIP297>3.0.CO;2-0[Crossref]
  • [10] B. Rezig, S. Duchemin, F. Guastavino, Sol. Energy Mater. 2(1), 53 (1979)[Crossref]
  • [11] H.S. Randhava, R.F. Bunshah, D.G. Brock, B.M. Basol, O.M. Staffsudd, Sol. Energy Mater. 6(4), 445 (1982)[Crossref]
  • [12] S.K. Haram, K.S.V. Santhanam, Thin Solid Films 238(1), 21 (1994)[Crossref]
  • [13] I. Grozdanov, Semicond. Sci. Technol. 9(6), 1234 (1994)[Crossref]
  • [14] S. Lindroos, A. Arnold, M. Leskela. Appl. Surf. Sci. 158(1–2), 75 (2000)[Crossref]
  • [15] S.D. Sartale, C.D. Lokhande, Materials Chemistry and Physics 65(1), 63 (2000)[Crossref]
  • [16] E. Fatas, T. Garcia, C. Montemayor, A. Medina, E. Garcia Camarero, F. Arjona, Materials Chemistry and Physics 12(2), 121 (1985)[Crossref]
  • [17] K.M. Gadave, C.D. Lokhande, Thin Solid Films 229(1), 1 (1993)[Crossref]
  • [18] D. Bonnet, P.V. Meyers, J. Mater. Res. 13, 2740 (1998)[Crossref]
  • [19] R. Ivanauskas, PhD thesis (Kaunas University of Technology, Kaunas, 1995) (in Lithuanian)
  • [20] R. Ivanauskas, V. Janickis, R. Maciulevičius, Chemical technology 4(13), 71 (1999) (in Lithuanian)
  • [21] V.J. Šukyte, R. Ivanauskas, V. Janickis, Polish J. Chem. 79, 759 (2005)
  • [22] S. Zalenkiene, J. Sukyte, R. Ivanauskas, V. Janickis, Inter. J. Photoenergy 40, 2660 (2007)
  • [23] O. Foss, In: H.J. Emeleus, A.G. Sharpe (Eds.), Advances in inorganic chemistry and radiochemistry. (Academic Press, New York, 1960) 243
  • [24] K. Maroy, PhD thesis (University of Bergen, Bergen, Norway, 1975)
  • [25] O. Foss, Acta Chem. Scand. 3, 708 (1949)[Crossref]
  • [26] I. Ancutiene, V. Janickis, S. Grevys, Chemija 2, 3 (1997)
  • [27] P. W. Atkins, Physical chemistry, 6th edition (Oxford University Press, London, 1998)
  • [28] Analytical methods for atomic absorption spectrometry, Perkin-Elmer 503 (1973)
  • [29] A.I. Vogel, Text book of quantitative chemical analysis, 5th edition (Longman Scientific & Technical, London, 1989)
  • [30] D. Briggs, In: M.P. Seach (Ed.), Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy (John Wiley and Sons, Chichester, 1983)
  • [31] C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Minnesota, 1978)
  • [32] E.N. Kaufmann (Editor-in-chief), Characterization of Materials (Wiley-Interscience, John Wiley & Sons, New Jersey, 2003) 1097
  • [33] D. Cullity, R.S. Stock, Elements of X-ray Diffraction (Prentice Hall, New York, 2001)
  • [34] G. B. Williamson, R. C. Smallman, Philos. Mag. 1, 34 (1956)[Crossref]
  • [35] E.N. Kaufmann, Characterization of Materials, (Wiley-Interscience, John Wiley & Sons, New Jersey, 2003) 1097
  • [36] D. Cullity, R.S. Stock, Elements of X-ray Diffraction, (Prentice Hall, New York, 2001)
  • [37] G.B. Williamson, R.C. Smallman, Philos. Mag. 1, 34 (1956)[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.