PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2013 | 11 | 7 | 1091-1100
Article title

Impurity profile analysis of drug products containing acetylsalicylic acid: a chemometric approach

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this work attention is focused on impurity profile analysis in combination with infrared spectroscopy and chemometric methods. This approach is considered as an alternative to generally complex and time-consuming classic analytical techniques such as liquid chromatography. Various strategies for constructing descriptive models able to identify relations among drug impurity profiles hidden in multivariate chromatographic data sets are also presented and discussed. The hierarchical (cluster analysis) and non-hierarchical segmentation algorithms (k-means method) and principal component analysis are applied to gain an overview of the similarities and dissimilarities among impurity profiles of acetylsalicylic acid formulations. A tree regression algorithm based on infrared spectra is used to predict the relative content of impurities in the drug products investigated. Satisfactory predictive abilities of the models derived indicate the possibility of implementing them in the quality control of drug products. [...]
Publisher
Journal
Year
Volume
11
Issue
7
Pages
1091-1100
Physical description
Dates
published
1 - 7 - 2013
online
26 - 4 - 2013
References
  • [1] Guidance for industry: PAT - a framework for innovative pharmaceutical development, manufacturing, and quality assurance (U.S. Department of Health and Human Services, Food and Drug Administration, USA, September 2004)
  • [2] D.C. Hinz, Anal. Bioanal. Chem. 384, 1036 (2006) http://dx.doi.org/10.1007/s00216-005-3394-y[Crossref]
  • [3] D.S. Hausman, R.T. Cambron, A. Sakr, Int. J. Pharm. 299, 19 (2005) http://dx.doi.org/10.1016/j.ijpharm.2005.03.005[Crossref]
  • [4] D.S. Hausman, R.T. Cambron, A. Sakr, Int. J. Pharm. 298, 80 (2005) http://dx.doi.org/10.1016/j.ijpharm.2005.04.011[Crossref]
  • [5] E.T.S. Skibsted, J.A. Westerhuis, A.K. Smilde, D.T. Witte, J. Pharm. Biomed. Anal. 43, 1297 (2007) http://dx.doi.org/10.1016/j.jpba.2006.10.037[Crossref]
  • [6] C. Buschmüler, W. Wiedey, C. Döscher, J. Dressler, J. Breitkreutz, Eur. J. Pharm. Biopharm. 69, 380 (2008) http://dx.doi.org/10.1016/j.ejpb.2007.09.014[Crossref]
  • [7] V. Lourenço, T. Herdling, G. Reich, J.C. Menezes, D. Lochmann, Eur. J. Pharm. Biopharm. 78, 513 (2011) http://dx.doi.org/10.1016/j.ejpb.2011.02.008[Crossref]
  • [8] A.C.F. Rumondor, L.S. Taylor, Int. J. Pharm. 398, 155 (2010) http://dx.doi.org/10.1016/j.ijpharm.2010.07.049[Crossref]
  • [9] F. Clarke, Vib. Spectrosc. 34, 25 (2004) http://dx.doi.org/10.1016/j.vibspec.2003.08.005[Crossref]
  • [10] K. Pöllänen, A. Häkkinen, S. Reinikainen, J. Rantanen, M. Karjalainen, M. Louhi-Kultanen, L. Nyström, J. Pharm. Biomed. Anal. 38, 275 (2005) http://dx.doi.org/10.1016/j.jpba.2005.01.009[Crossref]
  • [11] T. Rajalahti, O.M. Kvalheim, Int. J. Pharm. 417, 280 (2011) http://dx.doi.org/10.1016/j.ijpharm.2011.02.019[Crossref]
  • [12] T. Hill, P. Lewicki, STATISTICS: Methods and Applications. A Comprehensive Reference for Science, Industry, and Data Mining (StatSoft, Tulsa, Oklahoma, 2006)
  • [13] T. Hastie, R. Tibshirani, J. Friedman, The elements of statistical learning: Data mining, inference, and prediction, 2nd edition (Springer-Verlag, New York, 2009) http://dx.doi.org/10.1007/978-0-387-84858-7[Crossref]
  • [14] S. Görög, Anal. Bioanal. Chem. 377, 852 (2003) http://dx.doi.org/10.1007/s00216-003-2140-6[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11532-013-0243-2
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.