Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 11 | 4 | 519-526

Article title

Principal component analysis in interpretation of the results of HPLC-ELC, HPLC-DAD and essential elemental contents obtained for medicinal plant extracts

Content

Title variants

Languages of publication

EN

Abstracts

EN
Principal component analysis (PCA) was applied to compare its usefulness with cluster analysis (CA), and factorial k-means analysis (fkm), for evaluating the results obtained using HPLC-DAD, HPLC-ELC and spectroscopic techniques (AAS and UV/VIS spectrometry for determining content of N, P, Fe and Cu) in aqueous extracts of seven medicinal plants. These represented the following plant species that are rich in flavonoids: Betula verrucosa Ehrh., Equisetum arvense L., Polygonum aviculare L., Viola tricolor L., Crataegus oxyacantha L., Sambucus nigra L. and Helichrysum arenarium (L.) Moench. The databases analyzed comprised four sets: 1) results obtained by the use of HPLC-DAD detection, 2) results obtained by the use of electrochemical detection (HPLC-ELC), 3) results for determining elements - total and water-extractable species, and 4) all data combined. Application of statistical methods allowed the samples to be classified into four groups: 1) Crataegus, Sambucus, 2) Equisetum, Polygonum and Viola, 3) Betula, and 4) Helichrysum, which were differentiated by characteristic patterns. PCA supported by CA, was the most suitable method, because it simultaneously allowed for reduction of multidimensionality of the databases, grouped the samples into four clusters, and made possible selection of the factors responsible for differentiation of the plant materials studied. [...]

Publisher

Journal

Year

Volume

11

Issue

4

Pages

519-526

Physical description

Dates

published
1 - 4 - 2013
online
23 - 1 - 2013

Contributors

  • Department of Analytical Chemistry, Medical University of Gdansk, 80-416, Gdansk, Poland

References

  • [1] A.R. Coscione, J.C. de Andrade, R.J. Poppi, C. Mello, V. Raij, M.F. de Abreu, Anal. Chim. Acta 423, 31 (2000) http://dx.doi.org/10.1016/S0003-2670(00)01102-8[Crossref]
  • [2] S. Sinha, A.K. Gupta, K. Bhatt, Ecotox. Environ. Safe. 67, 267 (2007) http://dx.doi.org/10.1016/j.ecoenv.2006.07.005[Crossref]
  • [3] R. Goodacre, E.V. York, J.K. Heald, I.M. Scott, Phytochem. 62, 859 (2003) http://dx.doi.org/10.1016/S0031-9422(02)00718-5[Crossref]
  • [4] S. Razic, S.M. Dogo, L.J. Slavkovic, Microchem. J. 84, 93 (2006) http://dx.doi.org/10.1016/j.microc.2006.05.008[Crossref]
  • [5] S. Razic, A. Onija, S. Dogo, L. Slavkovic, A. Popovic, Talanta 67, 233 (2005) http://dx.doi.org/10.1016/j.talanta.2005.03.023[Crossref]
  • [6] M. Plessi, D. Bertelli, G. Rastelli, A. Albasini, A. Monzani, Fres. J. Anal. Chem. 361, 353 (1998) http://dx.doi.org/10.1007/s002160050902[Crossref]
  • [7] S. Tokalioglu, S. Kartal, J. Trace Micropr. Tech. 20, 127 (2002) http://dx.doi.org/10.1081/TMA-120002466[Crossref]
  • [8] M. Wesolowski, B. Suchacz, P. Konieczynski, Comb. Chem.High T. Scr. 6, 811 (2003)
  • [9] P. Konieczynski, M. Wesolowski, I. Radecka, Chem. Anal. (Warsaw) 54, 215 (2009)
  • [10] Y. He, X. Li, X. Deng, J. Food Eng. 79, 1238 (2007) http://dx.doi.org/10.1016/j.jfoodeng.2006.04.042[Crossref]
  • [11] Y. Woo, H. Kim, J. Cho, H. Chung, J. Pharm. Biomed. Anal. 21, 407 (1999) http://dx.doi.org/10.1016/S0731-7085(99)00145-4[Crossref]
  • [12] M. Otto, Chemometrics, Statistics and Computer Application in Analytical Chemistry (Wiley-VCH, Weinheim, 1999)
  • [13] J. Yang, L.H. Chen, Q. Zhang, M.X. Lai, Q. Wang, J. Sep. Sci. 30, 1276 (2007) http://dx.doi.org/10.1002/jssc.200600389[Crossref]
  • [14] R. Tian, P. Xie, H. Liu, J. Chromatogr. A 1216, 2150 (2009) http://dx.doi.org/10.1016/j.chroma.2008.10.127[Crossref]
  • [15] G. Weber, P. Konieczynski, Anal. Bioanal. Chem. 375, 1067 (2003)
  • [16] S. Kohlmünzer, Farmakognozja (PZWL, Warsaw, 1985) (in Polish)
  • [17] M. Vichi, H.A.L. Kiers, Comput. Stat. Data An. 37, 49 (2001) http://dx.doi.org/10.1016/S0167-9473(00)00064-5[Crossref]
  • [18] M.E. Timmerman, E. Ceulemans, H.A.L. Kiers, M. Vichi, Stat. Data An. 54, 1858 (2010) http://dx.doi.org/10.1016/j.csda.2010.02.009[Crossref]
  • [19] G. Fan, L. Tao, Q. Yue, T. Kuang, C. Tang, Y. Yang, W. Luo, X. Zhou, Y. Zhang, Planta Med. 78, 641 (2012) http://dx.doi.org/10.1055/s-0031-1298240[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11532-012-0197-9
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.