EN
Four proton conducting oxides of perovskite structure: BaZrO3, SrZrO3, BaCeO3 and SrCeO3 doped with 5 mol.% of gadolinium are compared in terms of crystal structure, microstructure, sinterability, water sorption ability, ionic transference number, electrical conductivity and stability towards CO2. Relations between proton conductivity, structural and chemical parameters: pseudo-cubic unit cell volume, lattice free volume, tolerance factor, crystal symmetry and electronegativity are discussed. The grain boundary resistance is shown to be the limiting factor of total proton-conductivity for the materials examined. The highest proton conductivity was observed for BaCeO3, however, it turned out to be prone to degradation in CO2-containing atmosphere and reduction at high temperatures. On the other hand, Ba and Sr zirconates are found to be more chemically stable, but exhibit low electrical conductivity. Electrical conductivity relaxation upon hydration is used to calculate proton diffusion coefficient. Selected materials were tested as electrolytes in solid oxide fuel cells. [...]