Preferences help
enabled [disable] Abstract
Number of results
2012 | 10 | 4 | 1183-1198
Article title

The effect of anatase crystal morphology on the photocatalytic conversion of NO by TiO2-based nanomaterials

Title variants
Languages of publication
Hydrogen titanate nanotubes (H-TTNT) were synthesized by the alkali hydrothermal method followed by proton exchange and then submitted either to thermal treatment or to acid hydrothermal reaction to generate TiO2-anatase nanocrystals of different morphologies. The samples were characterized by XRPD, TGA, sulfur analysis, N2 physisorption, UV-Vis spectroscopy and TEM. Their photocatalytic activities were determined by measuring the NO conversion in inert gas stream passed through the powder catalyst bed under UV radiation. Incomplete transformation into anatase resulted in nanomaterials with low activity due to coexistence with H-TTNT or TiO2-B precursors. Anatase specimens derived from H-TTNT aged in strong sulfuric acid media contained equidimensional nanoparticles, but retention of sulfate negatively affected their photocatalytic activity. Combining milder acidic pH with higher aging temperature, allowed synthesis of a sulfate free anatase with the same optical properties and specific surface area as the counterpart produced by calcination of H-TTNT at 550°C; however, the former exhibited truncated bi-pyramid nanocrystals and the other adopted the form of nanorods. This latter showed the highest photocatalytic activity for NO abatement, outperforming the benchmark photocatatyst TiO2-P25; this improved activity was tentatively ascribed to the maximization of high energy {001} facets in anatase nanorods formed during calcination of H-TTNT. [...]
Physical description
1 - 8 - 2012
29 - 5 - 2012
  • PETROBRAS S.A. / CENPES, Research & Development Centre, 21941-915, Rio de Janeiro, Brazil
  • PETROBRAS S.A. / CENPES, Research & Development Centre, 21941-915, Rio de Janeiro, Brazil
  • Department of Materials and Metallurgy Engineering, Federal University of Rio de Janeiro (UFRJ), 21941-972, Rio de Janeiro, Brazil
  • Department of Materials Engineering, Pontifical Catholic University, Gávea, 22453-900, Rio de Janeiro, Brazil
  • [1] S.N. Frank, A.J. Bard, J. Phys. Chem. 81, 1484 (1977)[Crossref]
  • [2] A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C 1, 1 (2000)[Crossref]
  • [3] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemannt, Chem. Rev. 95, 69 (1995)[Crossref]
  • [4] Q.-H. Zhang, L. Gao, J.-K Guo, Nanostruct. Mater. 11, 1293 (1999)[Crossref]
  • [5] D.V. Bavykin, J.M. Friedrich, F.C. Walsh, Adv. Mater. 18, 2807 (2006)[Crossref]
  • [6] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir 14, 3160 (1998)[Crossref]
  • [7] J. Yu, H. Yu, B. Chenga, C. Trapalis, J. Mol. Catal. A: Chem. 249, 135 (2006)[Crossref]
  • [8] M. Qamar, C.R. Yoon, H.J. Oh, N.H. Lee, K. Park, D.H. Kim, K.S. Lee, W.J. Lee, S.J. Kim, Catal. Today 131, 3 (2008)[Crossref]
  • [9] S. Ribbens, I. Caretti, E. Beyers, S. Zamani, E. Vinck, S. van Doorslaer, P. Cool, J. Phys. Chem. 115, 2302 (2011)
  • [10] R. Chen, C. Chu, J. Tan, J. Cao, W. Song, X. Xu, C. Jiang, W. Ma, C. Yang, B. Chen, Y. Gui, H. Kan, J. Hazard. Mater. 181, 234 (2010)[Crossref]
  • [11] E. Morgado Jr., M.A.S. de Abreu, G.T. Moure, B.A. Marinkovic, P.M. Jardim, A. Araujo, Mater. Res. Bull. 42, 1748 (2007)[Crossref]
  • [12] E. Morgado Jr., P.M. Jardim, B.A. Marinkovic, F.C. Rizzo, J.L. Zotin, M.A.S. Abreu, A.S. Araujo, Nanotechnology 18, 495710 (2007).[Crossref]
  • [13] D.V. Bavykin, F.C. Walsh, Titanate and Titania Nanotubes: Synthesis, Properties and Applications (RSC Nanoscience & Nanotechnology, Cambridge, 2010)
  • [14] H. Zhu, X. Gao, Y. Lan, D. Song, Y. Xi, J. Zhao, J. Am. Chem. Soc. 126, 8380 (2004)[Crossref]
  • [15] C-C. Tsai, H. Teng, Chem. Mater. 18, 367 (2006)[Crossref]
  • [16] B.A. Marinkovic, Y.C. Fredholm, E. Morgado Jr., P.M. Jardim, F. Rizzo, Mater. Charact. 61, 1009 (2010) (2010)[Crossref]
  • [17] E. Morgado Jr., M.A.S. Abreu, G.T. Moure, B.A. Marinkovic, P.M. Jardim, A.S. Araujo, Chem. Mater. 19, 665 (2007)[Crossref]
  • [18] Q. Chen, G. Du, S. Zhang, L.-M. Peng, Acta Crystallogr. Sect. B: Struct. Sci. B58, 587 (2002)[Crossref]
  • [19] E. Morgado Jr., M.A.S. de Abreu, O.C. Pravia, B.A. Marinkovic, P.M. Jardim, F.C. Rizzo, A.S. Araujo, Solid State Sci. 8, 888 (2006)[Crossref]
  • [20] R. Yoshida, Y. Suzuki, S. Yoshikawa, Mater. Chem. Phys. 91, 409 (2005)[Crossref]
  • [21] T.P. Feist, P.K. Davies, J. Solid State Chem. 101, 275 (1992)[Crossref]
  • [22] J. Jitputti, Y. Suzuki, S. Yoshikawa, Catal. Commun. 9, 1265 (2008)[Crossref]
  • [23] U. Diebold, N. Ruzycki, G.S. Herman, A. Selloni, Catal. Today 85, 93 (2003)[Crossref]
  • [24] J. Li, D. Xu, Chem. Commun. 46, 2301 (2010)[Crossref]
  • [25] A.S. Barnard, L.A. Curtiss, Nano Letters 5, 1261 (2005)[Crossref]
  • [26] R.L. Penn, J.F. Banfield, Cosmochim. Acta 63, 1549 (1999)[Crossref]
  • [27] T.P. Ang, J.Y. Law, Y-F. Han, Catal. Lett. 139, 77 (2010)[Crossref]
  • [28] L.K. Noda, R.M. Almeida, L.F.D. Probst, N.S. Gonçalves, J. Mol. Catal. A: Chem. 225, 39 (2005)[Crossref]
  • [29] J.A. Toledo Antonio, M.A. Cortes-Jacome, S.L. Orozco-Cerros, E. Montiel-Palacios, R. Suarez-Parra, C. Angeles-Chavez, J. Navarete, E. López-Salinas, Appl. Catal. 100, 47 (2010)[Crossref]
  • [30] A. Wold, Chem. Mater. 5, 280 (1993)[Crossref]
  • [31] A. Kudo, H. Kato, I. Tsuji, Chem. Lett. 33, 1534 (2004)[Crossref]
  • [32] S. Yin, Y. Fujishiro, J. Wu, M. Aki, T. Sato, J. Mater. Process. Technol. 137, 45 (2003)[Crossref]
  • [33] D. Yang, H. Liu, Z. Zheng, Y. Yuan, J-C. Zhao, E.R. Waclawik, X. Ke, H. Zhu, J. Am. Chem. Soc. 131, 17885 (2009)[Crossref]
  • [34] B.N. Shelimov, N.N. Tolkachev, O.P. Tkachenko, G.N. Baeva, K.V. Klementiev, A.Y. Stakheev, V.B. Kazansky, J. Photochem. Photobiol. A 195, 81 (2008)[Crossref]
  • [35] X. Fan, X. Chen, S. Zhu, Z. Li, T. Yu, J. Ye, Z. Zou, J. Mol. Catal. A: Chem. 284, 155 (2008)[Crossref]
  • [36] J. Zhu, Z. Deng, F. Chen, J. Zhang, H. Chen, M. Anpo, J. Huang, L. Zhang, Appl. Catal. B 62, 329 (2006)[Crossref]
  • [37] M. Lazzeri, A. Vittadini, A. Selloni, Phys. Rev. B 63, 155409 (2001)[Crossref]
  • [38] M. Lazzeri, A. Vittadini, A. Selloni, Phys. Rev. B 65, 119901 (2002)[Crossref]
  • [39] G. Cao, In Nanostructures and Nanomaterials (Imperial College Press, London, 2006) 18
  • [40] A.R. Armstrong, G. Armstrong, J. Canales, P.G. Bruce, Angew. Chem. Int. 43, 2286 (2004)[Crossref]
  • [41] A.R. Armstrong, G. Armstrong, J. Canales, R. García, P.G. Bruce, Adv. Mater. 17, 862 (2005)[Crossref]
  • [42] P. Hirsch, A. Howie, R. Nicholson, D.W. Pashley, M.J. Whelan, Electron Microscopy of Thin Crystals (Krieger Publishing Company, London, 1977) 551
  • [43] C.B. Carter, M.G. Norton, Ceramic Materials - Science and Engineering (Springer, New York, 2007) 226
  • [44] [. Tian, Z-Y. Zhou, S-G. Sun, Y. Ding, Z.L. Wang, Science 316, 732 (2007)[Crossref]
  • [45] L. Hu, Q. Peng, Y. Li, J. Am. Chem. Soc. 130, 16136 (2008)[Crossref]
  • [46] B. Wu, C. Guo, N. Zheng, Z. Xie, G.D. Stucky, J. Am. Chem. Soc. 130, 17563 (2008)[Crossref]
  • [47] F. Amano, T. Yasumoto, O.O. Prieto Mahney, S. Uchida, T. Shibayama, Y. Terada, B. Ohtani, Top. Catal. 53, 455 (2010)[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.