PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2012 | 10 | 1 | 194-204
Article title

Fuzzy modeling applied to optical and surface properties of a ferrocenylsiloxane polyamide solution

Content
Title variants
Languages of publication
EN
Abstracts
EN
A fuzzy model was designed to predict changes in surface tension and maximum absorbance due to self-assembly in a DMF solution of poly{1,1′-ferrocene-diamide-[1,3-bis(propylene) tetramethyl-disiloxane} as a function of temperature and concentration. The building of fuzzy rule-based inference systems appears as a grey-box because it allows interpretation of the knowledge contained in the model as well as its improvement with a-priori knowledge. The method provides accurate results and increases the efficiency of utilizing the available information in the model. Small mean squared errors (0.0064 for absorbance and 0.79 for surface tension) and strong correlations between experiment and simulated results (0.93 and 0.97, respectively) were found during model validation. The results showed that it is feasible to apply a Mamdani fuzzy inference system to the estimation of optical and surface properties of a ferrocenylsiloxane polyamide solution.
Publisher
Journal
Year
Volume
10
Issue
1
Pages
194-204
Physical description
Dates
published
1 - 2 - 2012
online
24 - 11 - 2011
References
  • [1] R.R. Yager, D.P. Filev, Essentials of Fuzzy Modeling and Control (John Wiley & Sons., New York, 1994)
  • [2] K. Tanaka, An Introduction to Fuzzy Logic for Practical Applications( Springer-Verlag, New York, 1997)
  • [3] M.R. Sarmasti Emami, The Journal of Mathematics and Computer Science 1, 339 (2010)
  • [4] D.A. Ress, JOM-e 51(8) (1999)
  • [5] M.N. Nádson Lima et al., AICHE 56, 965 (2010)
  • [6] T. Hanai et al., Comput. Chem. Eng. 27, 1011 (2003) http://dx.doi.org/10.1016/S0098-1354(03)00034-6[Crossref]
  • [7] A. Altinten et al., Comput. Chem. Eng. 27, 1031 (2003) http://dx.doi.org/10.1016/S0098-1354(03)00073-5[Crossref]
  • [8] N.M.N. Lima et al. J. Appl. Polym. Sci.106, 981 (2007) http://dx.doi.org/10.1002/app.25961[Crossref]
  • [9] B. Alonso et al., J. Organomet. Chem. 637, 642 (2001) http://dx.doi.org/10.1016/S0022-328X(01)01140-8[Crossref]
  • [10] I. Manners, J. Polym. Sci. Part. A. Polym. Chem. 40, 179 (2002) http://dx.doi.org/10.1002/pola.10069[Crossref]
  • [11] R. Resendes, et al., Chem. Eur. J. 7, 2414 (2001) http://dx.doi.org/10.1002/1521-3765(20010601)7:11<2414::AID-CHEM24140>3.0.CO;2-1[Crossref]
  • [12] A. Shimojima, K. Kuroda, Chem. Rec. 6, 53 (2006) http://dx.doi.org/10.1002/tcr.20073[Crossref]
  • [13] G. Belorgey, G. Sauvet, In: W. Ando, R.G. Jones, J. Chojnowski (Ed.), Organosilicone block and graft copolymers, in Silicon-Containing Polymers: The Science and Technology of Their Synthesis (Springer, Kluwer Academic Publishers, 2000) 43
  • [14] H. Wang, M.A. Winnik, I. Manners, Macromolecules 40, 3784 (2007) http://dx.doi.org/10.1021/ma062728r[Crossref]
  • [15] G. Riess, Prog. Polym. Sci. 28, 1107 (2003) http://dx.doi.org/10.1016/S0079-6700(03)00015-7[Crossref]
  • [16] M. Cazacu, C. Racles, M. Alexandru, A. Ioanid, A. Vlad, Polym. Intern. 58(6), 697 (2009) http://dx.doi.org/10.1002/pi.2581[Crossref]
  • [17] M. Cazacu et al., J. Polym. Sci. Polym. Chem. 47(21), 5845 (2009) http://dx.doi.org/10.1002/pola.23630[Crossref]
  • [18] M. Cazacu et al., J. Optoelectron. Adv. Mater. 12, 294 (2010)
  • [19] H. J. Coles et al., J. Mater. Chem. 9, 1085 (1999) http://dx.doi.org/10.1039/a900867e[Crossref]
  • [20] M. Cazacu et al., Macromolecules 39, 3786 (2006) http://dx.doi.org/10.1021/ma052030y[Crossref]
  • [21] A. Kandel, Fuzzy expert systems (CRC Press, Inc., Boca Raton, FL, 1992)
  • [22] M. Sugeno, G.T. Kang, Fuzzy. Set. Syst. 28, 15 (1988) http://dx.doi.org/10.1016/0165-0114(88)90113-3[Crossref]
  • [23] B. Kosko, Neural networks and fuzzy systems: a dynamical system approach (Prentice Hall, Upper Saddle River, NJ, 1991)
  • [24] H. Cartwright, Using artificial intelligence in chemistry and biology (CRC Press, New York, 2008) http://dx.doi.org/10.1201/9780849384141[Crossref]
  • [25] C.A. Pena Reyes, Coevolutionary Fuzzy Modeling (Springer Verlag, Berlin, 2004) http://dx.doi.org/10.1007/b99869[Crossref]
  • [26] S. Guillaume, IEEE T. Fuzzy. Syst. 9(3), 426 (2001) http://dx.doi.org/10.1109/91.928739[Crossref]
  • [27] E.H. Mamdani, S. Assilian, Int. J. Hum-Comput. S. 7(1), 1 (1975)
  • [28] M. Negnevitsky, Artificial Intelligence - A Guide to Intelligent Systems, 2nd edition (Addison Wesley, Essex, 2005)
  • [29] T. Takagi, M. Sugeno, IEEE T. Syst. Man Cy. A. 15, 116 (1985)
  • [30] J.S.R. Jang, C.T. Sun, E. Mizutani, Neuro-fuzzy and soft computing: a computational approach and machine intelligence (Prentice-Hall, Inc. Upper Saddle River, NJ 07458, 1997)
  • [31] J.R. Lopes, W. Loh, Langmuir 14(4), 750 (1998) http://dx.doi.org/10.1021/la9709655[Crossref]
  • [32] E. Cox, The Fuzzy Systems Handbook: A Practitioner’s Guide to Building, Using, and Maintaining Fuzzy Systems, 2nd edition (Academic Press, San Diego, CA, 1999)
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11532-011-0126-3
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.