Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2012 | 10 | 1 | 96-104

Article title

A computational investigation of carbon-doped beryllium monoxide nanotubes

Content

Title variants

Languages of publication

EN

Abstracts

EN
To investigate the influence of C-doping on the electrostatic structure properties in the frame work of density functional theory (DFT), we considered beryllium monoxide nanotubes (BeONTs), consisting of 60 Be and 60 O atoms. Full geometry optimizations are performed for all structures, i.e., all atoms are allowed to relax. Afterwards, the chemical shielding (CS) tensors are calculated for Be-9, O-17 and C-13 nuclei in the C-doped forms and also pristine models of the (10, 0) zigzag and (5, 5) armchair BeONTs. Formation energies indicate that C-doping of Be atom (CBe form) could be more favorable than C-doping of O atom (CO form) in both zigzag and armchair BeONTs. Gap energies and dipole moments detected the effects of dopant in the (5, 5) armchair models; however, those parameters did not indicate any significant changes in the C-doped (10, 0) zigzag BeONT models. The results show that the CS values for the Be and O atoms-contributed to the Be-C bonds or those atoms close to the C-doped region-in the CO form of BeONTs (zigzag and armchair) are changed. The same values only for the O atoms-contributed to the O-C bonds- in the CBe form of BeONTs (zigzag and armchair) are changed.

Publisher

Journal

Year

Volume

10

Issue

1

Pages

96-104

Physical description

Dates

published
1 - 2 - 2012
online
24 - 11 - 2011

Contributors

author
  • Islamic Azad University
author
  • Islamic Azad University
  • Islamic Azad University

References

  • [1] S. Iijima, Nature 354, 56 (1991) http://dx.doi.org/10.1038/354056a0[Crossref]
  • [2] N.G. Chopra, R.J. Luyken, K. Cherry, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Science 269, 966 (1995) http://dx.doi.org/10.1126/science.269.5226.966[Crossref]
  • [3] X.H. Sun, C.P. Li, W.K. Wong, N.B. Wong, C.S. Lee, S.T. Lee, B.K. Teo, J. Am. Chem. Soc. 124, 14464 (2002) http://dx.doi.org/10.1021/ja0273997[Crossref]
  • [4] R. Tenne, L. Margulis, M. Genut, G. Hodes, Nature London 360, 444 (1992) http://dx.doi.org/10.1038/360444a0[Crossref]
  • [5] R. Tenne, M. Homyonfer, Y. Feldman, Chem. Mater. 10, 3225 (1998) http://dx.doi.org/10.1021/cm9802189[Crossref]
  • [6] P. Zhang, V.H. Crespi, Phys. Rev. Lett. 89, 056403 (2002) http://dx.doi.org/10.1103/PhysRevLett.89.056403[Crossref]
  • [7] P.B. Sorokin, A.S. Fedorov, L.A. Chernozatonskii, Phys. Solid State 48, 398 (2006). http://dx.doi.org/10.1134/S106378340602034X[Crossref]
  • [8] A.N. Enyashin, I.R. Shein, A.L. Ivanovskii, Phys. Rev. B75, 193408 (2007)
  • [9] I.R. Shein, A.N. Enyashin, A.L. Ivanovskii, Phys Rev. B75, 245404 (2007)
  • [10] N. Hamada, S.I. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992) http://dx.doi.org/10.1103/PhysRevLett.68.1579[Crossref]
  • [11] X. Blase, L.X. Benedict, E.L. Shirley, S.G. Louie, Phys. Rev. Lett. 72, 1878 (1994) http://dx.doi.org/10.1103/PhysRevLett.72.1878[Crossref]
  • [12] I.R. Shein, M.V. Ryzhkov, M.A. Gorbunova, Yu.N. Makurin, A.L. Ivanovskii, JETP Lett. 85, 246 (2007) http://dx.doi.org/10.1134/S0021364007050062[Crossref]
  • [13] M.A. Gorbunova, I.R. Shein, Yu.N. Makurin, V.V. Ivanovskaya, V.S. Kijko, A.L. Ivanovskii, Physica E 41, 164 (2008) http://dx.doi.org/10.1016/j.physe.2008.07.002[Crossref]
  • [14] M. Mirzaei, Physica E 42, 1954 (2010) http://dx.doi.org/10.1016/j.physe.2010.03.015[Crossref]
  • [15] L.B. Casabianca, A.C. De Dios, J. Chem. Phys. 128, 052201(2008) http://dx.doi.org/10.1063/1.2816784[Crossref]
  • [16] J. Vaara, Phys. Chem. Chem. Phys. 9, 5399 (2007) http://dx.doi.org/10.1039/b706135h[Crossref]
  • [17] J.C. Facelli, Concepts Magn. Reson. Part A 20A, 42 (2004) http://dx.doi.org/10.1002/cmr.a.10096[Crossref]
  • [18] G. Wu, S. Dong, R. Ida, N. Reen, J. Am. Chem. Soc. 124, 1768 (2002) http://dx.doi.org/10.1021/ja011625f[Crossref]
  • [19] F.A. Bovey, Nuclear Magnetic Resonance Spectroscopy (Academic Press, San Diego, 1998)
  • [20] S. Hou, J. Zhang, Z. Shen, X. Zhao, Z. Xue, Physica E 27, 45 (2005) http://dx.doi.org/10.1016/j.physe.2004.10.006[Crossref]
  • [21] K. Wolinski, J.F. Hinton, P. Pulay, J. Am. Chem. Soc. 112, 8251(1990) http://dx.doi.org/10.1021/ja00179a005[Crossref]
  • [22] M. Mirzaei, J. Mol. Model.17, 527 (2011) http://dx.doi.org/10.1007/s00894-010-0751-3[Crossref]
  • [23] M. Mirzaei, A. Seif, N.L. Hadipour, Chem. Phys. Lett. 461, 246 (2008) http://dx.doi.org/10.1016/j.cplett.2008.07.024[Crossref]
  • [24] P.B. Sorokin, A.S. Fedorov, L.A. Chernozatonskie, Physics of the solid state 48, 2 (2006) http://dx.doi.org/10.1134/S106378340602034X[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11532-011-0115-6
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.