Preferences help
enabled [disable] Abstract
Number of results
2011 | 9 | 6 | 1080-1095
Article title

NSGA-II-RJG applied to multi-objective optimization of polymeric nanoparticles synthesis with silicone surfactants

Title variants
Languages of publication
Polydimethylsiloxane nanoparticles were obtained by nanoprecipitation, using a siloxane surfactant as stabilizer. Two neural networks and a genetic algorithm were used to optimize this process, by minimizing the particle diameter and the polydispersity, finding in this way the optimum values for surfactant and polymer concentrations, and storage temperature. In order to improve the performance of the non-dominated sorting genetic algorithm, NSGA-II, a genetic operator was introduced in this study - the transposition operator - “real jumping genes”, resulting NSGA-II-RJG. It was implemented in original software and was applied to the multi-objective optimization of the polymeric nanoparticles synthesis with silicone surfactants. The multi-objective function of the algorithm included two fitness functions. One fitness function was calculated with a neural network modelling the variation of the particle diameter on the surfactant concentration, polymer concentration, and storage temperature, and the other was computed by a neural network modelling the dependence of polydispersity index on surfactant and polymer concentrations. The performance of the software program that implemented NSGA-II-RJG was highlighted by comparing it with the software implementation of NSGA-II. The results obtained from simulations showed that NSGA-II-RJG is able to find non-dominated solutions with a greater diversity and a faster convergence time than NSGA-II. [...]
Physical description
1 - 12 - 2011
27 - 9 - 2011
  • Department of Chemical Engineering, “Gh. Asachi” Technical University of Iasi, 700050, Iasi, Romania
  • Department of Chemical Engineering, “Gh. Asachi” Technical University of Iasi, 700050, Iasi, Romania
  • “Petru Poni” Institute of Macromolecular Chemistry, 700487, Iasi, Romania
  • [1] A.V. Kabanov, E.V. Batrakova, V.Y. Alakhov, J. Control. Release 82, 189 (2002)[Crossref]
  • [2] B.A. Pfeifer, J.A. Burdick, R. Langer, Biomaterials 26, 117 (2005)[Crossref]
  • [3] A. Sanchez, M. Tobio, L. Gonzales, A. Fabra, M.J. Alonso, Eur. J. Pharm. Sci. 18, 221 (2003)[Crossref]
  • [4] A. Guo, G. Liu, J. Tao, Macromolecules 29, 2487 (1996)[Crossref]
  • [5] A. Harada, K. Kataoka, Prog. Polym. Sci. 31, 949 (2006)[Crossref]
  • [6] F. Henselwood, G. Liu, Macromolecules 30, 488 (1997)[Crossref]
  • [7] M. Iijima, Y. Nagasaki, T. Okada, M. Kato, K. Kataoka, Macromolecules 32, 1140 (1999)[Crossref]
  • [8] C. Nardin, S. Thoeni, J. Widmer, M. Winterhalter, W. Meier, Chem. Commun. 15, 1433 (2000)[Crossref]
  • [9] C. Nardin, J. Widmer, M. Winterhalter, W. Meier, Eur. Phys. J. E 4, 403 (2001)[Crossref]
  • [10] N. Angelova, D. Hunkeler, Trends Biotechnol. 17, 409 (1999)[Crossref]
  • [11] H.R. Krikeldorf, Silicon in Polymer Synthesis (Springer, New York, 1996)
  • [12] C.J. Zhou, R.F. Guan, S.Y. Feng, Eur. Polym. J. 40, 165 (2004)[Crossref]
  • [13] C. Racles, T. Hamaide, A. Ioanid, Appl. Organomet. Chem. 20, 235 (2006)[Crossref]
  • [14] H. Fessi, F. Puisieux, J. Ph. Devissaguet, N. Ammoury, S. Benita, Int. J. Pharm. 55, R1 (1989)[Crossref]
  • [15] D. Horn, J. Rieger, Angew. Chem. Int. Edit. 40, 4330 (2001)<4330::AID-ANIE4330>3.0.CO;2-W[Crossref]
  • [16] D. Quintanar-Guerrero, E. Allemann, H. Fessi, E. Doelker, Drug Dev. Ind. Pharm. 24, 1113 (1998)[Crossref]
  • [17] S. Stainmesse, A.M. Orecchioni, E. Nakache, F. Puisieux, H. Fessi, Colloid Polym. Sci. 273, 505 (1995)[Crossref]
  • [18] C. Racles, T. Hamaide, Macromol. Chem. Physic. 206, 1757 (2005)[Crossref]
  • [19] C. Racles, M. Cazacu, G. Hitruc, T. Hamaide, Colloid Polym. Sci. 287, 461 (2009)[Crossref]
  • [20] C.A. Coello Coello, G.B. Lamont, Applications of Multi-Objective Evolutionary Algorithms (World Scientific, Singapore, 2004)
  • [21] C.A. Coello Coello, In: A. Abraham, L. Jain, R. Goldberg (Eds.), Recent trends in evolutionary multiobjective optimization (Springer-Verlag, London, 2005)
  • [22] 7 C.A. Coello Coello, G.B. Lamont, D.A. Van Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edition (Springer, New York, 2007)
  • [23] K.C. Tan, E.F. Khor, T.H. Lee, Multiobjective Evolutionary Algorithms and Applications (Springer-Verlag, London, 2005)
  • [24] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, IEEE T. Evolut. Comput. 6, 182 (2002)[Crossref]
  • [25] K. Deb, Multiobjective Optimization using Evolutionary Algorithms (John Wiley & Sons, Chichester, 2001)
  • [26] R. Furtuna, S. Curteanu, F. Leon, Pet. Gas Univ. Ploiesti Bull. 61, 161 (2009)
  • [27] K. Mitra, S. Majumdar, S. Raha, Comput. Chem. Eng. 28, 2583 (2004)[Crossref]
  • [28] D. Sarkar, J.M. Modak, Chem. Eng. Sci. 60, 481 (2005)[Crossref]
  • [29] R.B. Kasat, S.K. Gupta, Comput. Chem. Eng. 27, 1785 (2003)[Crossref]
  • [30] B. McKlintock, The Discovery and Characterization of Transposable Elements (Garland, New York, 1987)
  • [31] N. Agrawal, G.P. Rangaiah, A.K. Ray, S.K. Gupta, Chem. Eng. Sci. 62, 2346 (2007)[Crossref]
  • [32] R. Kachhap, C. Guria, Macromol. Theor. Simul. 14, 358 (2005)[Crossref]
  • [33] K.S. Nawaz Ripon, S. Kwong, K.F. Man, Inform. Sciences 177, 632 (2007)[Crossref]
  • [34] S.W. Kantor, W.T. Grubb, R.C. Osthoff, J. Am. Chem. Soc. 76, 5190 (1954)[Crossref]
  • [35] F. Herrera, M. Lozano, J. Verdegay, Artif. Intell. Rev. 12, 265 (1998)[Crossref]
  • [36] R. Furtuna, S. Curteanu, M. Cazacu, Int. J. Quantum Chem. 111, 539 (2011)[Crossref]
  • [37] S. Curteanu, F. Leon, Int. J. Quantum Chem. 108, 617 (2007)[Crossref]
  • [38] S. Curteanu, M. Cazacu, J. Macromol. Sci. A45, 23 (2007) [Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.