Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2011 | 9 | 4 | 701-705

Article title

The role of Mg2FeH6 formation on the hydrogenation properties of MgH2-FeFx composites

Content

Title variants

Languages of publication

EN

Abstracts

EN
The hydrogenation properties of magnesium hydride mechanically milled with iron fluorides (FeF2 and FeF3), were investigated by Temperature Programmed Desorption (TPD) and volumetric methods using a Sieverts-type apparatus, as prepared upon dehydrogenation and finally upon subsequent hydrogenation. The activation energy of hydrogen desorption (Ea), calculated from the Kissinger formula using TPD measurements obtained with different heating rates, showed significant decreases of Ea in comparison to that of milled MgH2 without any dopants. Moreover, the influence of these metal fluorides on the thermodynamics of the decomposition process was also examined. In the case of the FeF2 dopant, rehydrogenation following desorption caused the complete decomposition of the iron fluoride to BCC iron and the formation of a predominant MgH2 phase. In contrast to FeF2, the addition of FeF3 led to the formation of β-MgH2 as a major phase coexisting with Mg2FeH6 and MgF2 compounds. The presence of pure Fe in the MgH2+FeF2 composite, as opposed to MgH2+FeF3 containing Mg2FeH6 and MgF2, did not cause any significant influence on the sorption properties of MgH2. Moreover, the original material doped with FeF3 predominantly showed iron in the Mg2FeH6 compound, while the FeF2 dopant iron mostly showed the nearly pure BCC metallic phase [...]

Publisher

Journal

Year

Volume

9

Issue

4

Pages

701-705

Physical description

Dates

published
1 - 8 - 2011
online
4 - 6 - 2011

Contributors

author
  • Department of Advanced Materials and Technologies, Military University of Technology, PL-00-908, Warsaw, Poland
author
  • Department of Advanced Materials and Technologies, Military University of Technology, PL-00-908, Warsaw, Poland
  • Department of Advanced Materials and Technologies, Military University of Technology, PL-00-908, Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, PL-00-908, Warsaw, Poland

References

  • [1] E. Ivanov, I. Konstanchuk, B. Bokhonov, V. Boldyre, J. Alloys Compd. 359, 320 (2003) http://dx.doi.org/10.1016/S0925-8388(03)00297-4[Crossref]
  • [2] F.J Liu, S. J Suda. J. Alloys Compd. 231, 742 (1995) http://dx.doi.org/10.1016/0925-8388(95)01711-9[Crossref]
  • [3] L-P. Ma, P. Wang, H-M. Cheng, J. Alloys Compd. 432, 1 (2007) http://dx.doi.org/10.1016/j.jallcom.2006.05.103[Crossref]
  • [4] L-P. Ma, X-D. Kang, H-B. Dai, Y. Liang, Z-Z. Fang, P-J. Wang, P. Wang, H-M. Cheng, Acta Mater. 57, 2250 (2009) http://dx.doi.org/10.1016/j.actamat.2009.01.025[Crossref]
  • [5] Y. Luo, P. Wang, L-P. Ma, H-M. Cheng, Scri. Mater.56, 765 (2007) http://dx.doi.org/10.1016/j.scriptamat.2007.01.016[Crossref]
  • [6] Y. Luo, P. Wang, L-P. Ma, H-M. Cheng, J. Alloys Compd. 453, 138 (2008) http://dx.doi.org/10.1016/j.jallcom.2006.11.113[Crossref]
  • [7] H. Gu, Y. Zhu, L. Li, Int. J. Hydrogen Energy 34, 7707 (2009) http://dx.doi.org/10.1016/j.ijhydene.2009.07.052[Crossref]
  • [8] G. Barkhordarian, T. Klassen, R. Bormann. J. Phys. Chem. B 110, 11020 (2006) http://dx.doi.org/10.1021/jp0541563[Crossref]
  • [9] J.F.R. de Castro, A.R. Yavari, A. LeMoulec, T.T. Ishikawa, W.J. Botta, J. Alloys Compd. 389, 270 (2005) http://dx.doi.org/10.1016/j.jallcom.2004.07.042[Crossref]
  • [10] A.R. Yavari, A. LeMoulec, J.F.R. de Castro, S. Deledda, O. Friedrichs, W.J. Botta, G. Vaughan, T. Klassen, A. Fernandez, A. Kvick, Scri. Mater. 52, 719 (2005) http://dx.doi.org/10.1016/j.scriptamat.2004.12.020[Crossref]
  • [11] S. Deledda, A. Borissova, C. Poinsignon, W.J. Botta, M. Dornheim, T. Klassen. J. Alloys Compd. 404, 409 (2005) http://dx.doi.org/10.1016/j.jallcom.2005.01.115[Crossref]
  • [12] I.E. Malka, T. Czujko, J. Bystrzycki. Int. J. Hydrogen Energy 35, 1706 (2010) http://dx.doi.org/10.1016/j.ijhydene.2009.12.024[Crossref]
  • [13] S.-A. Jin, J.-P. Ahn, J.-H. Shim, Y.W. Cho, K.-W. Yi. J. Power Sources 172, 859 (2007) http://dx.doi.org/10.1016/j.jpowsour.2007.04.090[Crossref]
  • [14] P. Selvam, K. Yvon, Int J Hydrogen Energy 16, 615 (1991) http://dx.doi.org/10.1016/0360-3199(91)90085-W[Crossref]
  • [15] J. Huot, S. Boily, E. Akiba, R. Schulz, J. Alloys Compd. 280, 306 (1998) http://dx.doi.org/10.1016/S0925-8388(98)00725-7[Crossref]
  • [16] A. Vaichere, D.R. Leiva, T.T. Ishikawa, W.J. Botta, Mater. Sci. Forum 570, 39 (2008) http://dx.doi.org/10.4028/www.scientific.net/MSF.570.39[Crossref]
  • [17] J. Huot, G. Liang, S. Boily, A. Van Neste, R. Schulz, J. Alloys Compd. 293, 495 (1999) http://dx.doi.org/10.1016/S0925-8388(99)00474-0[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11532-011-0051-5
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.