Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2011 | 9 | 2 | 232-239

Article title

Silica-carrageenan hybrids used for cell immobilization realizing high-temperature degradation of nitrile substrates

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this work the application of hybrid materials, containing TEOS as source of SiO2 and k-carrageenan in different percentage, synthesized by the sol-gel method at room temperature was studied. They were used as matrices for entrapment of whole Bacillus sp. UG-5B cells, producers of thermostable nitrilase. The effect of the surface area and size and quantity of pores in the synthesized materials on the enzyme activity was evaluated. The process of biodegradation of different concentrations of toxic, potentially carcinogenic and mutagenic substrates by the obtained biocatalysts was investigated. The enzyme reaction takes place by the nitrilase pathway, catalysing nitrile hydrolysis directly to the corresponding carboxylic acid, forming ammonia. At batch experiments the influence of the substrate concentration of different nitriles was tested and 20 mM concentration was found most suitable. A two-step biodegradation process in a laboratory-scale column bioreactor of o-, m- and p-tolunitrile as a mixture was followed. After operation of the system for nine hours for the mixture of substrates at a flow rate of 45 mL h−1 and at 60°C, the overall conversion realized was above 90%, showing a good efficiency of the investigated process.

Publisher

Journal

Year

Volume

9

Issue

2

Pages

232-239

Physical description

Dates

published
1 - 4 - 2011
online
17 - 2 - 2011

Contributors

  • Bulgarian Academy of Science
  • University of Chemical Technology and Metallurgy
  • University of Aveiro, CICECO
  • University of Aveiro, CICECO

References

  • [1] I. Gill, A. Ballesteros, TIBTECH 18, 282 (2000)
  • [2] I. Gill, A. Ballesteros, TIBTECH 18, 496 (2000)
  • [3] G. Dervakos, C. Webb, Biotech. Adv. 9, 559 (1991) http://dx.doi.org/10.1016/0734-9750(91)90733-C[Crossref]
  • [4] T. Ahuja, I. Mir, D. Kumar, Rajesh, Biomaterials 28, 791 (2007) http://dx.doi.org/10.1016/j.biomaterials.2006.09.046[Crossref]
  • [5] F. Teles, L. Fonseca, Materials Science and Engineering: C 28, 1530 (2008) [Crossref]
  • [6] C. Chen, C. Kao, S. Chen, Chemosphere 71, 133 (2008) http://dx.doi.org/10.1016/j.chemosphere.2007.10.058[Crossref]
  • [7] Ch. Rao, R. Prakasham, Ch. Lakshmi, A. Rao, Current Trends in Biotechnology and Pharmacy 3, 311 (2009)
  • [8] J. Nigam, J. Bacteriol. 8, 189 (2000)
  • [9] U. Beshay, D. Abd-El-Haleem, H. Moawad, S. Naki, Biotech. Letters 24/15, 1295 (2002) http://dx.doi.org/10.1023/A:1016222328138[Crossref]
  • [10] A. Viggiani, G. Olivieri, L. Siani, A. Di Donato, J. Biotechnol. 17 (2006)
  • [11] A. Soares, M. Murto, B. Guieysse, B. Mattiasson, Appl. Microbiol. Biotechnol. 69, 597 (2006) http://dx.doi.org/10.1007/s00253-005-0067-x[Crossref]
  • [12] M. Cantarella, L. Cantarella, A. Callifuoko, J. Ind. Microbiol. Biotechnol. 33, 208 (2006) http://dx.doi.org/10.1007/s10295-004-0200-3[Crossref]
  • [13] L. Martínková, V. Vejvoda, O. Kaplan, D. Kubáč, A. Malandra, M. Cantarella, K. Bezouška, V. Křen, Biotech. Adv. 27, 661 (2009) http://dx.doi.org/10.1016/j.biotechadv.2009.04.027[Crossref]
  • [14] D. Di Gioia, L. Bertin, G. Zanaroli, L. Marchetti, F. Fava, Process Biochemistry 41, 935 (2006) http://dx.doi.org/10.1016/j.procbio.2005.10.016[Crossref]
  • [15] I. Nam, Y. Kim, K. Murugesan, J. Jeon, Y. Chang, Y. Chang, J. Hazard. Mat. 157, 114 (2008) http://dx.doi.org/10.1016/j.jhazmat.2007.12.086[Crossref]
  • [16] K. Chapatwala, G. Babu, E. Armstead, J. Wolfram, Appl. Biochem. Biotechnol. 51, 717 (1995) http://dx.doi.org/10.1007/BF02933472[Crossref]
  • [17] R. Bauer, N. Layh, C. Syldatk, A. Willets, Biotech. Letters 18/3, 343 (1996)
  • [18] Y. Shchipunov, T. Karpenko, A. Krekoten, Composite Interfaces 11/8, 587 (2005) http://dx.doi.org/10.1163/1568554053148816[Crossref]
  • [19] A. Rekuć, J. Bryjak, K. Szymańska, A. Jarzębski, Bioresource Technology 101, 2076 (2010) http://dx.doi.org/10.1016/j.biortech.2009.11.077[Crossref]
  • [20] D. Avnir, T. Coradin, O. Lev, J. Livage, J. Mater. Chem. 16 1013 (2006) http://dx.doi.org/10.1039/b512706h[Crossref]
  • [21] A. Pannier, C. Oehm, A. Fischer, P. Werner, U. Soltmann, H. Böttcher, Enzyme and Microbial. Tech. 47, 291 (2010) http://dx.doi.org/10.1016/j.enzmictec.2010.07.014[Crossref]
  • [22] V. Castelvetro, C. Vita, Adv. Coll. Interface Sci. 108–109, 167 (2004) http://dx.doi.org/10.1016/j.cis.2003.10.017[Crossref]
  • [23] D. Graham, R. Pereira, D. Barfield, D. Cowan, Enzyme and Microbial Technology 26, 368 (2000) http://dx.doi.org/10.1016/S0141-0229(99)00169-6[Crossref]
  • [24] N. Nassif, O. Bouvet, M. Rager, C. Roux, T. Coradin, J. Livage, Nat. Matters 1, 42 (2002) http://dx.doi.org/10.1038/nmat709[Crossref]
  • [25] Y. Namano, S. Sunger, Process Biochemistry 39, 705 (2004) http://dx.doi.org/10.1016/S0032-9592(03)00183-3[Crossref]
  • [26] U. Schubert, J. Sol-Gel Sci. Tech. 26, 47 (2003) http://dx.doi.org/10.1023/A:1020729100148[Crossref]
  • [27] J. Fawcett, J. Scott, J. Clin. Path. 13, 156 (1960) http://dx.doi.org/10.1136/jcp.13.2.156[Crossref]
  • [28] M. Desimone, J. Degrossi, M. D’Aquino, L. Diaz, Biotechnology Letters 24, 1557 (2002) http://dx.doi.org/10.1023/A:1020375321009[Crossref]
  • [29] N. Nassif, C. Roux, T. Coradin, M. Rager, O. Bouvet, J. Livage, J. Mater. Chem. 13, 203 (2003) http://dx.doi.org/10.1039/b210167j[Crossref]
  • [30] B. Samuneva, P. Djambaski, E. Kashchieva, G. Chernev, L. Kabaivanova, E. Emanuilova, I.M.M. Salvado, M.H.V. Fernandes, A. Wu, Journal of Non-Crystalline Solids 354, 733 (2008) http://dx.doi.org/10.1016/j.jnoncrysol.2007.07.094[Crossref]
  • [31] L. Kabaivanova, E. Dobreva, E. Emanuilova, G. Chernev, B. Samuneva, I.M.M. Salvado, Minerva Biotechnologica 18, 23 (2006)
  • [32] L. Kabaivanova, E. Emanuilova, G. Chernev, B. Samuneva, P. Djambaski, I.M.M. Salvado, Minerva Biotechnologica 19, 57 (2007)
  • [33] G. Chernev, B. Borisova, L. Kabaivanova, I.I. Salvado, Cent. Eur. J. Chem. 8, 870 (2010) http://dx.doi.org/10.2478/s11532-010-0065-4[Crossref]
  • [34] M. Wang, Top. Catal. 35, 117–130 (2005) http://dx.doi.org/10.1007/s11244-005-3817-1[Crossref]
  • [35] H. Velankar, K. Clarke, R. Preez, D. Cowan, S. Burton, Trends in Biotechnology 28, 561 (2010) http://dx.doi.org/10.1016/j.tibtech.2010.08.004[Crossref]
  • [36] S. Pasunooti, W. Surya, S. Tan, Z. Liang, J. Mol. Cat. B: Enzymatic 67, 98 (2010) http://dx.doi.org/10.1016/j.molcatb.2010.07.012[Crossref]
  • [37] L. Martinkova, V. Kren, Biocatal. Biotransform. 2, 73 (2002) http://dx.doi.org/10.1080/10242420290018069[Crossref]
  • [38] L. Zheng, K. Flora, D. Brennan, Chem. Mater. 10, 3974 (1998). http://dx.doi.org/10.1021/cm980422w[Crossref]
  • [39] M. Garcia, M. Pena, Bioresour. Technol. 80, 137 (2001) http://dx.doi.org/10.1016/S0960-8524(01)00076-1[Crossref]
  • [40] C. Miyake-Nakayama, H. Ikatsu, M. Kashihara, M Tanaka, Appl. Microbiol. Biotechnol. 70/5, 625 (2006) http://dx.doi.org/10.1007/s00253-005-0194-4[Crossref]
  • [41] G. Alvares, M. Desimone, L. Diaz, Appl. Microbiol. Biotechnol. 73/5, 1059 (2007)
  • [42] H. Harms, M. Wells, J. Roelof, J. Vander Meer, Appl. Microbiol. Biotechnol. 70, 273 (2006) http://dx.doi.org/10.1007/s00253-006-0319-4[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11532-010-0140-x
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.