PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2010 | 8 | 6 | 1179-1184
Article title

The effect of dopant’s valence (+III and +V) on the anion/cation uptake properties of antimony-doped tin dioxide

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Antimony is perhaps the most frequently used doping element of tin dioxide. Although antimony of different oxidation states have been used in the synthesis, the effect of dopant’s valence on ion exchange properties has not been investigated critically. In our study the valence of antimony had clear effects on the metal uptake properties of Sb-doped SnO2 materials. Extremely high Tc uptake (Kd > 100 000 mL g−1) on Sb(III)-doped material was observed in conditions under which Sb(V)-doped material did not show any Tc uptake. However, the Sb(V)-doped material showed good Ni2+ uptake properties (Kd up to 33 000 mL g−1), even at pH values below the material’s point of zero charge (pzc), while the Sb(III)-doped material showed Ni2+ uptake only at pH above its pzc. The cation uptake of Sb-doped SnO2 resembles typical weakly acidic cation exchanger character but the uptake of TcO4- does not follow a typical anion exchange pattern. Instead, we propose a sorption process related to redox reactions as the probable Tc uptake process.
Publisher

Journal
Year
Volume
8
Issue
6
Pages
1179-1184
Physical description
Dates
published
1 - 12 - 2010
online
8 - 10 - 2010
Contributors
author
  • Laboratory of Radiochemistry, Department of Chemistry, University of Helsinki, P.O.Box 55, FI-00014, Helsinki, Finland, risto.koivula@helsinki.fi
References
  • [1] J. Rockenberger, U. zum Felde, M. Tischer, L. Tröger, M. Haase, H. Weller, J. Chem. Phys. B 112, 4296 (2000) http://dx.doi.org/10.1063/1.480975[Crossref]
  • [2] K. Sun, J. Liu, N.D. Browning, J. Catal. 205, 266 (2002) http://dx.doi.org/10.1006/jcat.2001.3456[Crossref]
  • [3] K.C. Mishra, K.H. Johnson, P.C. Schmidt, Phys. Rev. B: Condens. Matter. 51, 13972 (1995)
  • [4] C. McGinley, S.A. Moussalami, M. Riedler, M. Pflughoefft, H. Borchert, M. Haase, A.R.B. De Castro, H. Weller, T. Moller, Eur. Phys. J. D 16, 225 (2001) http://dx.doi.org/10.1007/s100530170097[Crossref]
  • [5] B. Slater, C. Richard, A. Catlow, D.H. Gay, D.E. Williams, V. Dusastre, J. Phys. Chem. B 103, 10644 (1999) http://dx.doi.org/10.1021/jp9905528[Crossref]
  • [6] M. Kojima, H. Kato, M. GAtto, Philos. Mag. B. 68, 215 (1993) http://dx.doi.org/10.1080/01418639308226402[Crossref]
  • [7] C.A. Vincent, D. Veston, J. Electrochem. Soc. 119, 518 (1972) http://dx.doi.org/10.1149/1.2404242[Crossref]
  • [8] T. Nutz, U. zum Felde, J. Chem. Phys. 110, 12142 (1999) http://dx.doi.org/10.1063/1.479151[Crossref]
  • [9] Y. Nakanishi, Y. Suzuki, T. Nakamura, Y. Hatanaka, Y. Fukuda, A. Fujisawa, G. Shimaoka, Appl. Surf. Sci. 48–49, 55 (1991) http://dx.doi.org/10.1016/0169-4332(91)90307-6[Crossref]
  • [10] D.A. White, R. Rãutiu, Chem. Eng. J. 66, 85 (1997) http://dx.doi.org/10.1016/S1385-8947(96)03163-4[Crossref]
  • [11] R. Rautiu, D.A. White, Solvent Extr. Ion Exch. 14, 721 (1996) http://dx.doi.org/10.1080/07366299608918365[Crossref]
  • [12] J.D. Donaldson, M.J. Fuller, J. Inorg. Nuc. Chem. 30, 1083 (1968) http://dx.doi.org/10.1016/0022-1902(68)80328-8[Crossref]
  • [13] I.M. El-Naggar, E.I. Shabana, M.I. El-Dessouky, Talanta 39, 653 (1992) http://dx.doi.org/10.1016/0039-9140(92)80076-P[Crossref]
  • [14] Y. Inoue, H. Yamazaki, Bull. Chem. Soc. Jpn. 55, 3782 (1982) http://dx.doi.org/10.1246/bcsj.55.3782[Crossref]
  • [15] N. Jaffrezic-Renault, J. Inorg. Nuc. Chem. 40, 539 (1978) http://dx.doi.org/10.1016/0022-1902(78)80438-2[Crossref]
  • [16] R. Koivula, J. Lehto, R. Harjula, J. Mater. Chem. 12, 3615 (2002) http://dx.doi.org/10.1039/b207790f[Crossref]
  • [17] R. Koivula, R. Harjula, J. Lehto, Micropor. Mesopor. Mat. 55, 231 (2002) http://dx.doi.org/10.1016/S1387-1811(02)00411-0[Crossref]
  • [18] N. Takeno, Geological Survey of Japan, Open File Report No.419, Atlas of Eh-pH diagrams. Intercomparison of thermodynamic databases (Research Center for Deep Geological Environments, Japan, 2005) http://www.gsj.jp/GDB/openfile/files/no0419/openfile419e.pdf.
  • [19] M. Caldararu, M.F. Thomas, J. Bland, D. Spranceana, Appl. Catal. A: General 209, 383 (2001) http://dx.doi.org/10.1016/S0926-860X(00)00776-6[Crossref]
  • [20] M. Batzill, U. Diebold, Prog. Surf. Sci. 79, 47 (2005) http://dx.doi.org/10.1016/j.progsurf.2005.09.002[Crossref]
  • [21] C. Goebbert, R. Nonninger, M.A. Aegerter, H. Schmidt, Thin Solid Films 79 (1999)
  • [22] R.G. Egdell, J. Rebane, T.J. Walker, Phys. Rev. B 59(3), 1792 (1999) http://dx.doi.org/10.1103/PhysRevB.59.1792[Crossref]
  • [23] V. Dusastre, D. Williams, J. Phys. Chem. B 102, 6732 (1998) http://dx.doi.org/10.1021/jp981391v[Crossref]
  • [24] E. Anders, The radiochemistry of technetium, U.S. Atomic Energy Commission, NAS-NS 3021 (1960)
  • [25] K.M. Krupka, Geochemical factors affecting the behaviour of antimony, cobalt, europium, technetium, and uranium in Vadose sediments, Pasific Nortwest National Laboratory,PNNL-14126 (2002)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11532-010-0112-1
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.