EN
Three-layer artificial neural networks (ANN) capable of recognizing the type of raw material (herbs, leaves, flowers, fruits, roots or barks) using the non-metals (N, P, S, Cl, I, B) contents as inputs were designed. Two different types of feed-forward ANNs - multilayer perceptron (MLP) and radial basis function (RBF), best suited for solving classification problems, were used. Phosphorus, nitrogen, sulfur and boron were significant in recognition; chlorine and iodine did not contribute much to differentiation. A high recognition rate was observed for barks, fruits and herbs, while discrimination of herbs from leaves was less effective. MLP was more effective than RBF.