Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2010 | 8 | 5 | 1117-1126

Article title

Ab initio study of hydrogen bond complexes of ring compounds containing the H2N-C=Y moiety with water


Title variants

Languages of publication



Ab initio calculations, including natural charge population and natural resonance theory analyses, have been carried out to study the two-way effects between hydrogen bonds (H-bonds) and the intramolecular resonance effect by using the H-bonded complexes of ring compounds containing the H2N-C=Y moiety (C=Y bond is contained in the six-membered or five-membered rings) with water as models. The amino groups in the four monomers of ring compounds (FAYs, Y represents the heavy atoms in the substituent groups, =CH, =N, =SiH, and =P, respectively) can all serve as H-bond donors (HD) and H-bond acceptors (HA) to form stable H-bonded complexes with water. The HD H-bond and resonance effect enhance each other (positive two-way effects) whereas the HA H-bond and resonance effect weaken each other (negative two-way effects). The resonance effect in FAY(1) (C=Y bond is contained in the six-membered rings) is weaker than that in formamide, and those in FAY(2) and FAY(3) (C=Y bonds are contained in the five-membered rings). The two-way effects between H-bond and resonance effect exist in the H-bonded complexes of ring compounds containing the H2N-C=Y moiety with water. [...]










Physical description


1 - 10 - 2010
5 - 9 - 2010


  • Department of Chemistry and Chemical Engineering, Jining University, Qufu, 273155, Shandong, China


  • [1] A. Greenberg, C.M. Breneman, J.F. Liebman, The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science (Wiley, New York, 2000)
  • [2] A. Greenberg, C.M. Breneman, J.F. Liebman, The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science (Wiley, New York, 2002)
  • [3] L. Pauling, The Nature of the Chemical Bond, 3rd edition (Cornell University, Ithaca, New York, 1960)
  • [4] E.D. Glendening, J.A. Hrabal, J. Am. Chem. Soc. 119, 12940 (1997) http://dx.doi.org/10.1021/ja970074j[Crossref]
  • [5] T. Liu, H. Li, M.-B. Huang, Y. Duan, Z.-X. Wang, J. Phys. Chem. A 112, 5436 (2008) http://dx.doi.org/10.1021/jp712052e[Crossref]
  • [6] S.F. Boys, F. Bernardi, Mol. Phys. 19, 553 (1970) http://dx.doi.org/10.1080/00268977000101561[Crossref]
  • [7] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M. A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B.G. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, GAUSSIAN 03, Revision B.04 (Gaussian, Inc., Pittsburgh, PA, 2003)
  • [8] A.E. Reed, F. Weinhold, J. Chem. Phys. 78, 4066 (1983) http://dx.doi.org/10.1063/1.445134[Crossref]
  • [9] A.E. Reed, R.B. Weinstock, F. Weinhold, J. Chem. Phys. 83, 735 (1985) http://dx.doi.org/10.1063/1.449486[Crossref]
  • [10] F. Weinhold, J.E. Carpenter, In: R. Naaman, Z. Vager (Eds.), The Structure of Small Molecules and Ions (Plenum, New York, 1988) 227–236
  • [11] E.D. Glendening, F. Weinhold, J. Comp. Chem. 19, 593 (1998) http://dx.doi.org/10.1002/(SICI)1096-987X(19980430)19:6<593::AID-JCC3>3.0.CO;2-M[Crossref]
  • [12] E.D. Glendening, F. Weinhold, J. Comp. Chem. 19, 610 (1998) http://dx.doi.org/10.1002/(SICI)1096-987X(19980430)19:6<610::AID-JCC4>3.0.CO;2-U[Crossref]
  • [13] E.D. Glendening, J.K. Badenhoop, F. Weinhold, J. Comp. Chem. 19, 628 (1998) http://dx.doi.org/10.1002/(SICI)1096-987X(19980430)19:6<628::AID-JCC5>3.0.CO;2-T[Crossref]
  • [14] K.B. Wiberg, Tetrahedron 24, 1083 (1968) http://dx.doi.org/10.1016/0040-4020(68)88057-3[Crossref]
  • [15] E.D. Glendening, J.K. Badenhoop, A.E. Reed, J.E. Carpenter, B.J.A. Bohmann, C.M. Morales, F. Weinhold, NBO. 5.0 (Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin, 2001)
  • [16] S. Scheiner, Hydrogen Bonding (Oxford University Press, New York, 1997)
  • [17] G.R. Desiraju, T. Steiner, The Weak Hydrogen Bond (Oxford University Press, Oxford, 1999)
  • [18] C.E. Dykstra, Acc. Chem. Res. 21, 355 (1988) http://dx.doi.org/10.1021/ar00154a001[Crossref]
  • [19] A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1988) http://dx.doi.org/10.1021/cr00088a005[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.