PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2010 | 8 | 2 | 308-319
Article title

A new specific mechanism for thioacid/azide amidation: electronic and solvent effects

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Detailed theoretical studies of azide/thioacid amidation are performed using density functional theory. The calculated results indicate that electronic properties of azide have significant effects on reaction pathways, which result in two distinct mechanisms for electron-rich and electron-poor azide coupling in the base-promoted amidation. For electron-rich azide amidation, after the concerted [3+2] cycloaddition of azide/thiocarboxylate, a new reaction channel is found challenging that recently mentioned, which follows two consecutive, unimolecular reactions with very low activation barriers (−1) to give an anionic amide and a nitrous sulfide (N2S). Distinct from electron-rich azide amidation, electron-poor azide first couples with thiocarboxylate to form a linear stable adduct, and then passes through the transition state of the rate-controlling step to afford the anionic amide, rather than the thiatrazoline. The free energy barrier of this step is 4.2 kcal mol−1 lower than that previously proposed. Comparatively, the azide/thioacid amidations undergo the concerted [3+2] cycloaddition and the subsequent retro-[3+2] cycloaddition process to give cis-enol form of the amide, which have higher activation barriers than those in the based-promoted amidation. Solvent effects investigated indicate that non-polar solvents, such as chloroform, are more preferable for the base-promoted thioacid/azide amidation. [...]
Keywords
Publisher

Journal
Year
Volume
8
Issue
2
Pages
308-319
Physical description
Dates
published
1 - 4 - 2010
online
23 - 3 - 2010
Contributors
author
  • College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou, 310014, China, gaoyl@zjut.edu.cn
References
  • [1] M.C. Morán et al., Green Chem. 6, 233 (2004) http://dx.doi.org/10.1039/b400293h[Crossref]
  • [2] S. Yamada, Rev. Heteroat. Chem. 19, 203 (1999)
  • [3] G.C. Barrett, Chemistry and biochemistry of the amino acids (Chapman and Hall, London, 1985)
  • [4] S. Kumar, H. Singh, R. Sharma, J. Indian Chem. Soc. 80, 1111 (2003)
  • [5] C.R. Bondy, S.J. Loeb, Coord. Chem. Rev. 240, 77 (2003)
  • [6] D. Saravanakumar, N. Sengottuvelan, M. Kandaswamy, P.G. Aravindan, D. Velmurugan, Tetrahedron Lett. 46, 7255 (2005) http://dx.doi.org/10.1016/j.tetlet.2005.08.045[Crossref]
  • [7] P. Piatek, J. Jurczak, Chem. Commun. 2450 (2002) [Crossref]
  • [8] L.J. Kuo, J. H. Liao, C.T. Chen, C.H. Huang, C.S. Chen, J.M. Fang, Org. Lett. 5, 1821 (2003) http://dx.doi.org/10.1021/ol034364i[Crossref]
  • [9] K.L. Han, G.Z. He, J. Photobio. Photochem. C: Photochem. Rev. 8, 56 (2007)
  • [10] L.F. Capitan-Vallvey, Arroyo-Guerrero, E.M.D. Fernandez-Ramos, F. Santoyo-Gonzalez, Anal. Chem. 77, 4459 (2005) http://dx.doi.org/10.1021/ac050117b[Crossref]
  • [11] U. Boas, J.B. Christensen, K.J. Jensen, J. Comb. Chem. 6, 497 (2004) http://dx.doi.org/10.1021/cc034056b[Crossref]
  • [12] N. Zinieris, C. Zikos, N. Ferderigos, Tetrahedron Lett. 47, 6861 (2006) http://dx.doi.org/10.1016/j.tetlet.2006.07.053[Crossref]
  • [13] F. Albericio, Curr. Opin. Chem. Biol. 8, 211 (2004) http://dx.doi.org/10.1016/j.cbpa.2004.03.002[Crossref]
  • [14] N.T. Salzameda, M.T. Huggins, D.A. Lightner, Tetrahedron 62, 8610 (2006) http://dx.doi.org/10.1016/j.tet.2006.06.034[Crossref]
  • [15] L.L. Parker, A.R. Houk, J.H. Jensen, J. Am. Chem. Soc. 128, 9863 (2006) http://dx.doi.org/10.1021/ja0617901[Crossref]
  • [16] A.J. Lampkins, O. Abdul-Rahim, H. Li, R.K. Castellano, Org. Lett. 7, 4471 (2005) http://dx.doi.org/10.1021/ol051768x[Crossref]
  • [17] T. Suzuki et al., J. Org. Chem. 70, 5592 (2005) http://dx.doi.org/10.1021/jo0505324[Crossref]
  • [18] G.J. Zhao, K.L. Han, J. Phys. Chem. A 111, 2469 (2007) http://dx.doi.org/10.1021/jp068420j[Crossref]
  • [19] H. Mollendal, S. Samdal, J. Phys. Chem. A. 110, 2139 (2006) http://dx.doi.org/10.1021/jp056598k[Crossref]
  • [20] L.A. Clapp et al., Inorg. Chem. 44, 8495 (2005) http://dx.doi.org/10.1021/ic050632s[Crossref]
  • [21] I.V. Korendovych, R.J. Staples, W.M. Reiff, E.V. Rybak-Akimova, Inorg. Chem. 43, 3930 (2004) http://dx.doi.org/10.1021/ic0351601[Crossref]
  • [22] D.S. Marlin, M.M. Olmstead, P.K. Mascharak, Inorg. Chim. Acta. 297, 106 (2000) http://dx.doi.org/10.1016/S0020-1693(99)00291-1[Crossref]
  • [23] A. Chanda et al., J. Inorg. Biochem. 100, 606 (2006) http://dx.doi.org/10.1016/j.jinorgbio.2005.12.016[Crossref]
  • [24] C. Schickaneder, F.W. Heinemann, R. Alsfasser, Eur. J. Inorg. Chem. 2357 (2006)
  • [25] G.H. Hakimelahi, G. Just, Tetrahedron Lett. 21, 2119 (1980) http://dx.doi.org/10.1016/S0040-4039(00)78973-8[Crossref]
  • [26] T. Rosen, I.M. Lico, T.W. Chu, J. Org. Chem. 53, 1580 (1988) http://dx.doi.org/10.1021/jo00242a051[Crossref]
  • [27] N. Shangguan, S. Katukojvala, R. Greenberg, L.J. Williams, J. Am. Chem. Soc. 125, 7754 (2003) http://dx.doi.org/10.1021/ja0294919[Crossref]
  • [28] X. Zhu, K. Pachamuthu, R.R. Schmidt, Org. Lett. 6, 1083 (2004) http://dx.doi.org/10.1021/ol036186z[Crossref]
  • [29] R. Merkx, A.J. Brouwer, D.T.S Rijkers, R.M.J. Liskamp, Org. Lett. 7, 1125 (2005) http://dx.doi.org/10.1021/ol0501119[Crossref]
  • [30] K.N. Barlett, R.V. Kolakowski, S. Katukojvala, L.J. Williams, Org. Lett. 8, 823 (2006) http://dx.doi.org/10.1021/ol052671d[Crossref]
  • [31] R.V. Kolakowski, N. Shangguan, L.J. Williams, Tetrahedron Lett. 47, 1163 (2006) http://dx.doi.org/10.1016/j.tetlet.2005.12.020[Crossref]
  • [32] R.V. Kolakowski, N. Shangguan, R.R. Sauers, L.J. Williams, J. Am. Chem. Soc. 128, 5695 (2006) http://dx.doi.org/10.1021/ja057533y[Crossref]
  • [33] P. Surabhi, X.H. Wu, L.Q. Hu, Tetrahedron Lett. 47, 4609 (2006) http://dx.doi.org/10.1016/j.tetlet.2006.04.144[Crossref]
  • [34] X. Wu, L. Hu, Tetrahedron Lett. 46, 840 (2005)
  • [35] S. Knapp, E. Darout, Org. Lett. 7, 203 (2005) http://dx.doi.org/10.1021/ol047889z[Crossref]
  • [36] M. Elofsson, L.A. Salvador, J. Kihlberg, Tetrahedron, 53, 369 (1997) http://dx.doi.org/10.1016/S0040-4020(96)00992-1[Crossref]
  • [37] L.A. Marcaurelle, C.R. Bertozzi, J. Am. Chem. Soc. 123, 1587 (2001) http://dx.doi.org/10.1021/ja003713q[Crossref]
  • [38] S.-S.P. Chou, T.J. Chow, C.-H. Hsu, C. Yang, S.-H. Long, C.-D. Lin, J. Chem. Soc., Perkin Trans. 1, 1691 (1997) http://dx.doi.org/10.1039/a607817f[Crossref]
  • [39] M.A. McKervey, B.O. Sullivan, P.L. Myers, R.H. Green, J. Chem. Soc., Chem. Commun. 94 (1993) [Crossref]
  • [40] M.J. Frisch, et al. Gaussian 03, revision C.01 (Gaussian, Inc., Wallingford, CT, 2004)
  • [41] A.D. Becke, J. Chem. Phys. 98, 5648 (1993) http://dx.doi.org/10.1063/1.464913[Crossref]
  • [42] R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989)
  • [43] T. Ziegler, Chem. Rev. 91, 651 (1991) http://dx.doi.org/10.1021/cr00005a001[Crossref]
  • [44] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988) http://dx.doi.org/10.1103/PhysRevB.37.785[Crossref]
  • [45] B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 157, 200 (1989) http://dx.doi.org/10.1016/0009-2614(89)87234-3[Crossref]
  • [46] K.J. Fukui, Phys. Chem. 74, 4161 (1970) http://dx.doi.org/10.1021/j100717a029[Crossref]
  • [47] D.G. Truhlar, K. Morokuma, ACS Symposium Series 721 (American Chemical Society, Washington, DC, 1999)
  • [48] J. Tomasi, M. Persico, Chem. Rev. 94, 2027 (1994) http://dx.doi.org/10.1021/cr00031a013[Crossref]
  • [49] R.S. Mulliken, J. Chem. Phys. 23, 1833 (1955) http://dx.doi.org/10.1063/1.1740588[Crossref]
  • [50] R.S. Mulliken, J. Chem. Phys. 23, 1841 (1955) http://dx.doi.org/10.1063/1.1740589[Crossref]
  • [51] R.S. Mulliken, J. Chem. Phys. 23, 2338 (1955) http://dx.doi.org/10.1063/1.1741876[Crossref]
  • [52] R.S. Mulliken, J. Chem. Phys. 23, 2343 (1955) http://dx.doi.org/10.1063/1.1741877[Crossref]
  • [53] K.B. Wiberg, Tetrahedron, 24, 1083 (1968) http://dx.doi.org/10.1016/0040-4020(68)88057-3[Crossref]
  • [54] A.E. Reed, R.B. Weinstock, F. Weinhold, J. Chem. Phys. 83, 735 (1985) http://dx.doi.org/10.1063/1.449486[Crossref]
  • [55] A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1988) http://dx.doi.org/10.1021/cr00088a005[Crossref]
  • [56] N.J. Saettel, O. Wiest, D.A. Singleton, M.P. Meyer, J. Am. Chem. Soc. 123, 11552 (2002) http://dx.doi.org/10.1021/ja026924z[Crossref]
  • [57] Y.D. Wu, Z.X. Yu, J. Am. Chem. Soc. 123, 5777 (2001) http://dx.doi.org/10.1021/ja010114q[Crossref]
  • [58] Z.X. Yu, Y.D. Wu, J. Org. Chem. 68, 412 (2003) http://dx.doi.org/10.1021/jo026330e[Crossref]
  • [59] I. Fleming, Frontier Orbitals and Organic Chemical Reactions (Wiley, London, 1982)
  • [60] M.G. Evans, M. Polanyi, Trans. Faraday Soc. 34, 11 (1938) http://dx.doi.org/10.1039/tf9383400011[Crossref]
  • [61] M.G. Evans, E. Warhurst, Trans. Faraday Soc. 34, 614 (1938) http://dx.doi.org/10.1039/tf9383400614[Crossref]
  • [62] R.P. Bell, Proc. R. Soc. London, A. 154, 414 (1936) http://dx.doi.org/10.1098/rspa.1936.0060[Crossref]
  • [63] R.P. Bell, J. Chem. Soc., Faraday Trans. 72, 2088 (1976) http://dx.doi.org/10.1039/f29767202088[Crossref]
  • [64] J.E. Rode, J.Cz. Dobrowolski, J. Phys. Chem. A, 110, 207 (2006) http://dx.doi.org/10.1021/jp0522260[Crossref]
  • [65] J.E. Rode, J.Cz. Dobrowolski, J. Phys. Chem. A, 110, 3723 (2006) http://dx.doi.org/10.1021/jp055073p[Crossref]
  • [66] J.E. Rode, J.Cz. Dobrowolski, Chem. Phys. Lett. 449, 240 (2007) http://dx.doi.org/10.1016/j.cplett.2007.10.048[Crossref]
  • [67] G.A. Jeffrey, W. Saenger, In Hydrogen Bonding in Biological Structures; Springer: New York, 1991
  • [68] S. Deechongkit, P. E. Dawson, J. W. Kelly, J. Am. Chem. Soc. 126, 16762(2004) http://dx.doi.org/10.1021/ja045934s[Crossref]
  • [69] W.B. Stockton, M.F. Rubner, Macromolecules 30, 2717(1997). http://dx.doi.org/10.1021/ma9700486[Crossref]
  • [70] K.L. Han, G.Z. He, J. Photochem. Photobiol. C: Photochem. Rev. 8, 55 (2007) http://dx.doi.org/10.1016/j.jphotochemrev.2007.03.002[Crossref]
  • [71] A. Derecskei-Kovacs, D.S. Marynick, J. Am. Chem. Soc. 122, 2078 (2000) http://dx.doi.org/10.1021/ja993441v[Crossref]
  • [72] R.G. Wilkins, Kinetics and Mechanism of Reactions of Transition Metal Complexes (Wiley-VCH, Weinheim, 2002)
  • [73] J.R. Keeffe, S. Gronert, M.E. Colvin, N.L. Tran, J. Am. Chem. Soc. 125,11730(2003). http://dx.doi.org/10.1021/ja0356683[Crossref]
  • [74] L. P. Ju, K. L. Han, J. Z. H. Zhang, J. Comput. Chem. 30, 305 (2009) http://dx.doi.org/10.1002/jcc.21032[Crossref]
  • [75] J.R. Alvarez-Idaboy, L. Reyes, J. Cruz, Org. Lett. 8, 1763 (2006) http://dx.doi.org/10.1021/ol060261z[Crossref]
  • [76] S. Karady et al., Org. Lett. 5, 1175 (2003) http://dx.doi.org/10.1021/ol027301t[Crossref]
  • [77] T.L. Sordo, J.J. Dannenberg, J. Org. Chem. 64, 1922 (1999) http://dx.doi.org/10.1021/jo981961n[Crossref]
  • [78] A.G. Marangoni, Enzyme Kinetics: A Modern Approach (Wiley, New Jersey, 2003) 17
  • [79] H. Zhang, R.S. Zhu, G.J. Wang, K.L. Han, G.Z. He, N.Q. Lou, J. Chem. Phys. 110, 2922 (1999) http://dx.doi.org/10.1063/1.477935[Crossref]
  • [80] T.X. Xie, Y. Zhang, M.Y. Zhao, K.L. Han, Phys. Chem. Chem. Phys. 5, 2034 (2003) http://dx.doi.org/10.1039/b300763d[Crossref]
  • [81] T.S. Chu, Y. Zhang, K.L. Han, Int. Rev. Phys. Chem. 25, 201 (2006) http://dx.doi.org/10.1080/01442350600677929[Crossref]
  • [82] T.S. Chu, K.L. Han, G.C. Schatz, J. Phys. Chem. A 111, 8286 (2007) http://dx.doi.org/10.1021/jp075173q[Crossref]
  • [83] T.S. Chu, K.L. Han, Phys. Chem. Chem. Phys. 10, 2431 (2008) http://dx.doi.org/10.1039/b715180b[Crossref]
  • [84] J. Hu, K.L. Han, G.Z. He, Phys. Rev. Lett. 95, 123001 (2005) http://dx.doi.org/10.1103/PhysRevLett.95.123001[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11532-009-0139-3
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.