Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2010 | 8 | 1 | 134-141

Article title

The difference in stability between 5′R and 5′S diastereomers of 5′,8-cyclopurine-2′-deoxynucleosides. DFT study in gaseous and aqueous phase

Content

Title variants

Languages of publication

EN

Abstracts

EN
Oxidatively generated damage to DNA frequently appears in the human genome as an effect of aerobic metabolism or as the result of exposure to exogenous oxidizing agents. Due to these facts it has been decided to calculate the stability of 5′,8-cyclo-2′-deoxyadenosine/guanosine (cdA, cdG) in their 5′R and 5′S diastereomeric forms. For all points of quantum mechanics studies presented, the density functional theory (DFT) with B3LYP parameters on 6-311++G** basis set level was used. The calculations showed a significant negative enthalpy for glycosidic bond cleavage reaction for cationic forms and slightly negative for neutral ones. The preliminary study of the discussed process has shown the nature of stepwise nucleophilic substitution DN*AD type mechanism. Surprisingly, the different values in free energy, between short-lived oxacarbenium ion intermediates, have been found to lie over a relatively small range, around 1 and 2.8 kcal mol−1. For anions, the decomposition enthalpies were found as positive in aqueous phases. These theoretical results are supported by the formic acid hydrolysis experiments of both diastereomers of cdA, for the first time. (5′S)cdA exhibited higher stability than (5′R)cdA. [...]

Publisher

Journal

Year

Volume

8

Issue

1

Pages

134-141

Physical description

Dates

published
1 - 2 - 2010
online
16 - 2 - 2010

Contributors

  • Department of Biopharmacy, Medical University of Lodz, 90-151, Łodz, Poland

References

  • [1] J. Cadet, T. Duoki, D. Gasparutto, J-L. Ravanat, Mutation Research 531, 5 (2003)
  • [2] K. Miaskiewicz, J.H. Miller, A.F. Fuciarelli, Nucleic Acids Res. 23, 515 (1995) http://dx.doi.org/10.1093/nar/23.3.515[Crossref]
  • [3] C. Chatgilialoglu, M. Guerra, Q.G. Mulazzani, J. Am. Chem. Soc. 125, 3839 (2003) http://dx.doi.org/10.1021/ja029374d[Crossref]
  • [4] R. Flyunt, R. Bazzanini, C. Chatgilialoglu, Q.G. Mulazzani, J. Am. Chem. Soc. 122, 4225 (2000) http://dx.doi.org/10.1021/ja9941577[Crossref]
  • [5] R. bo Zhang, L.A. Eriksson, Chem. Phys. Lett. 417, 303 (2006) http://dx.doi.org/10.1016/j.cplett.2005.10.020[Crossref]
  • [6] K. Randerath, G-D. Zhou, R.L. Somers, J.H. Robbins, P.J. Brooks, J. Biol. Chem. 276, 36051 (2001) (and references therein) http://dx.doi.org/10.1074/jbc.M105472200[Crossref]
  • [7] M. Dizdaroglu, P. Jaruga, H. Rodriguez, Free Radic. Biol. 30, 774 (2001) http://dx.doi.org/10.1016/S0891-5849(01)00464-6[Crossref]
  • [8] J. Cadet, T. Douki, D. Gasparutto, J-L. Ravanat, Rad. Phys. Chem. 72, 293 (2005) http://dx.doi.org/10.1016/j.radphyschem.2003.12.059[Crossref]
  • [9] M. Dizdaroglu, P. Jaruga, H. Rodriguez, Free Radical Biol. Med. 30, 774 (2001) http://dx.doi.org/10.1016/S0891-5849(01)00464-6[Crossref]
  • [10] P. Jaruga, M. Birincioglu, H. Rodriguez, M. Dizdaroglu, Biochemistry 41, 3703 (2002) http://dx.doi.org/10.1021/bi016004d[Crossref]
  • [11] L.B. Jimenez, S. Encinas, C. Chatgilialoglu, M.A. Miranda, Org. Biomol. Chem. 6, 1083 (2008) http://dx.doi.org/10.1039/b718222h[Crossref]
  • [12] R. Rios-Font, L. Rodriguez-Santiago, J. Bertran, M. Sodupe, J. Phys. Chem. B. 111, 6071 (2007) http://dx.doi.org/10.1021/jp070822j[Crossref]
  • [13] J.T. Stivers, Y.L. Jiang, Chem. Rev. 103, 2729 (2003) http://dx.doi.org/10.1021/cr010219b[Crossref]
  • [14] T. Lindahl, B. Nyberg, Biochemistry 11, 3610 (1967) http://dx.doi.org/10.1021/bi00769a018[Crossref]
  • [15] A.N. Richardson, J. Gu, S. Wang, Y. Xie, H.F. Schaefer III, J. Am. Chem. Soc. 126, 4404 (2004) http://dx.doi.org/10.1021/ja030487m[Crossref]
  • [16] J.A. Theruvathu, P. Jaruga, M. Dizdaroglu, P.J. Brooks, Mech. Ageing & Dev. 128, 494 (2007) http://dx.doi.org/10.1016/j.mad.2007.06.006[Crossref]
  • [17] A. Romieu, D. Gasparutto, D. Molko, J. Cadet, J. Org. Chem. 63, 5245 (1998) http://dx.doi.org/10.1021/jo980083q[Crossref]
  • [18] A. Romieu, D. Gasparutto, J. Cadet, Chem. Res. Toxicol. 12, 412 (1999) http://dx.doi.org/10.1021/tx9802668[Crossref]
  • [19] B. Karwowski, J. Gaillard, A. Grand, J. Cadet, Org. Biomol. Chem. 6, 3408 (2008) http://dx.doi.org/10.1039/b807046f[Crossref]
  • [20] B. Karwowski, Tetrahedron Asym. 19, 2390 (2008) http://dx.doi.org/10.1016/j.tetasy.2008.10.025[Crossref]
  • [21] A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard-III, W.M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992) http://dx.doi.org/10.1021/ja00051a040[Crossref]
  • [22] W.J. Hehre, L. Radom, P. Schleyer, R.J.A. Pople, Ab Initio Molecular Orbital Theory (Wiley, New York, 1986)
  • [23] R. Krishnan, H.B. Schlegel, J.A. Pople, J. Chem. Phys. 72, 4654 (1980) http://dx.doi.org/10.1063/1.439708[Crossref]
  • [24] L.T. Nguyen, T.N. Le, M.T. Nguyen, J. Chem. Soc., Faraday Trans. 94, 3541 (1998) http://dx.doi.org/10.1039/a806630b[Crossref]
  • [25] V. Venkatesan, K. Sndararajan, K. Sankaran, K.S. Viswanathan, Spectrochem. Acta A 58, 467 (2002) http://dx.doi.org/10.1016/S1386-1425(01)00555-8[Crossref]
  • [26] S. Miertus, J. Tomasi, Chem. Phys. 65, 239 (1982) http://dx.doi.org/10.1016/0301-0104(82)85072-6[Crossref]
  • [27] M.J. Frisch et al., Gaussian 03, Revision D.01 (Gaussian Inc., Pittsburgh, PA, 2003)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11532-009-0104-1
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.