Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2009 | 7 | 4 | 598-656

Article title

Carbon paste electrodes in the new millennium

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this review (with 500 refs), both electrochemistry and electroanalysis with carbon paste-based electrodes, sensors, and detectors are of interest, when attention is focused on the research activities in the years of new millennium. Concerned are all important aspects of the field, from fundamental investigations with carbon paste as the electrode material, via laboratory examination of the first electrode prototypes, basic and advanced studies of various electrode processes and other phenomena, up to practical applications to the determination of inorganic ions, complexes, and molecules. The latter is presented in a series of extensive tables, offering a nearly complete survey of methods published within the period of 2001–2008. Finally, the latest trends and outstanding achievements are also outlined and future prospects given. [...]

Publisher

Journal

Year

Volume

7

Issue

4

Pages

598-656

Physical description

Dates

published
1 - 12 - 2009
online
6 - 10 - 2009

Contributors

  • Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, CZ-532 10, Pardubice, Czech Republic
  • Laboratory of Physical Chemistry and Microbiology for the Environment, 54600, Villers-les-Nancy, France
author
  • Institute of Chemistry — Analytical Chemistry, Karl-Franzens-University of Graz, A-3000, Graz, Austria
author
  • Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, CZ-532 10, Pardubice, Czech Republic

References

  • [1] P. Zuman, Electrolysis with a dropping mercury electrode: J. Heyrovský’s contribution to electrochemistry. Critical Reviews in Analytical Chemistry, 31 (2001): 281–289. http://dx.doi.org/10.1080/20014091076767[Crossref]
  • [2] I. Švancara, K. Vytřas, K. Kalcher, A. Walcarius, and J. Wang, Carbon paste electrodes in facts, numbers, and notes: A review on the occasion of the 50-years jubilee of carbon paste in electrochemistry and electroanalysis. Electroanalysis, 21 (2009): 7–28. http://dx.doi.org/10.1002/elan.200804340[Crossref]
  • [3] R. N. Adams, Carbon paste electrodes. Analytical Chemistry, 30 (1958): 1576–1576. http://dx.doi.org/10.1021/ac60141a600[Crossref]
  • [4] R. N. Adams, Electrochemistry at Solid Electrodes (New York: M. Dekker, 1969).
  • [5] R. N. Adams, Carbon paste electrodes: A Review. Review of Polarography (Kyoto, Japan), 11 (1963): 71–78.
  • [6] M. Březina, Estimation of electrochemical activity of carbon using a paste electrode. Nature, 212 (1966): 283–283. http://dx.doi.org/10.1038/212283a0[Crossref]
  • [7] J. Heyrovský, “Elektrolysa se rtut’ovou kapkovou kathodou” (in English: Electrolysis with the mercury drop cathode). Chemické Listy XVI (1922): 258–264.
  • [8] C. Olson and R. N. Adams, Carbon paste electrodes. Application to anodic voltam-metry. Analytica Chimica Acta, 22 (1960): 582–589, plus C. Olson and R. N. Adams, Carbon paste electrodes application to cathodic reductions and anodic stripping voltammetry. Analytica Chimica Acta, 29 (1963): 358–363. http://dx.doi.org/10.1016/S0003-2670(00)88341-5[Crossref]
  • [9] T. Kuwana and W. G. French, Carbon paste electrodes containing some electroactive compounds. Analytical Chemistry, 36 (1964): 241–242. http://dx.doi.org/10.1021/ac60207a006[Crossref]
  • [10] L. S. Marcoux, K. G. Prater, B. G. Prater, and R. N. Adams, Nonaqueous carbon paste electrode. Analytical Chemistry, 37 (1965): 1446–1447. http://dx.doi.org/10.1021/ac60230a047[Crossref]
  • [11] D.G. Davis and M.E. Everhart, Chronopotentiometry of the bromide-bromine couple at platinum and carbon paste electrodes. Analytical Chemistry, 36 (1965): 38–40. http://dx.doi.org/10.1021/ac60207a016[Crossref]
  • [12] A. L. Beilby and B.R. Mather, Resistance effects of two types of carbon paste electrodes. Analytical Chemistry, 37 (1965): 766–768. http://dx.doi.org/10.1021/ac60225a039[Crossref]
  • [13] C. A. H. Chambers and J. K. Lee, Studies of the extraction of organic molecules into the carbon-paste electrode. Journal of Electroanalytical Chemistry, 15 (1967): 309–314. http://dx.doi.org/10.1016/0022-0728(67)80007-X[Crossref]
  • [14] Gy. Farsang, Voltammetric properties and analytical uses of carbon paste electrodes prepared with silicone oil. Acta Chimica Academiae Scientiarum Hungaricae, 45 (1965): 163–176.
  • [15] H. Monien, H. Specker, and K. Zinke, Application of various carbon electrodes for inverse voltammetric determination of silver. Fresenius Zeitschrift fuer Analytische Chemie, 225 (1967): 342–351. http://dx.doi.org/10.1007/BF00983679[Crossref]
  • [16] Š. Mesarić and E. M. F. Dahmen, Ion-selective carbon-paste electrodes for halides and silver(I) ions. Analytica Chimica Acta, 64 (1973): 431–438. http://dx.doi.org/10.1016/S0003-2670(01)82475-2[Crossref]
  • [17] D. Bauer and M. P. Gaillochet, Etude du comportement de la pate de carbone a compose electroactif incorpore. Electrochimica Acta, 19 (1974): 597–606. http://dx.doi.org/10.1016/0013-4686(74)85016-4[Crossref]
  • [18] J. Lindquist, A Study of seven different carbon paste electrodes. Journal of Electroanalytical Chemistry, 52 (1974): 37–46. http://dx.doi.org/10.1016/S0022-0728(74)80099-9[Crossref]
  • [19] P. Söderhjelm, A Comparison of the analytical utility of three different potential ramp techniques in voltammetry, using a carbon-paste electrode. Journal of Electroanalytical Chemistry, 71 (1976): 109–115. http://dx.doi.org/10.1016/S0022-0728(76)80294-X[Crossref]
  • [20] R. N. Adams, Probing brain chemistry with electroanalytical techniques. Analytical Chemistry, 48 (1976): 1126A–1138A. http://dx.doi.org/10.1021/ac50008a001[Crossref]
  • [21] T. Yao and S. Musha, Electrochemical enzymic determinations of ethanol and L-lactic acid with a carbon paste electrode modified chemically with nicotinamide adenine dinucleotide. Analytica Chimica Acta, 110 (1979): 203–209. http://dx.doi.org/10.1016/S0003-2670(01)93110-1[Crossref]
  • [22] K. Ravichandran and R. P. Baldwin, Chemically modified carbon paste electrodes. Journal of Electroanalytical Chemistry & Interfacial Electrochemistry, 126 (1981): 293–300. http://dx.doi.org/10.1016/S0022-0728(81)80438-X[Crossref]
  • [23] M. E. Rice Z. Galus, and R. N. Adams, Graphite paste electrodes: Effects of paste composition and surface states on electron-transfer rates. Journal of Electroanalytical Chemistry, 143 (1983): 89–102. http://dx.doi.org/10.1016/S0022-0728(83)80256-3[Crossref]
  • [24] F. N. Albahadily and H. A. Mottola, Improved response of carbon-paste electrodes for electrochemical detection in flow systems by pretreatment with surfactants. Analytical Chemistry, 59 (1987): 958–962. http://dx.doi.org/10.1021/ac00134a007[Crossref]
  • [25] W. Matuszewski and M. Trojanovicz, Graphite paste-based enzymatic glucose electrode for flow-injection analysis. Analyst (UK), 113 (1988): 735–738. http://dx.doi.org/10.1039/an9881300735[Crossref]
  • [26] K. Kalcher, Chemically modified carbon paste electrodes in voltammetric analysis. Electroanalysis, 2 (1990): 419–433. http://dx.doi.org/10.1002/elan.1140020603[Crossref]
  • [27] I. Švancara, K. Vytřas, F. Renger, and M.R. Smyth, Application of carbon paste electrodes in electroanalysis. A Review. Sborník Vědeckých Prací, Vysoká Škola Chemicko-technologická; Pardubice, 56 (1992/93): 21–57.
  • [28] N. A. Ulakhovich, E. P Medyantseva, and G.K. Budnikov, Carbon-paste electrodes as chemical sensors in voltammetry. Journal of Analytical Chemistry, 48 (1993): 980–998.
  • [29] K. Kalcher, J. M. Kauffmann, J. Wang, I. Švancara, K. Vytřas, C. Neuhold, and Z. Yang, Sensors based on carbon paste in electrochemical analysis: A Review with particular emphasis on the period of 1990-1993. Electroanalysis, 7 (1995): 5–22. http://dx.doi.org/10.1002/elan.1140070103
  • [30] L. Gorton, Carbon paste electrodes modified with enzymes, tissues, and cells (A Review). Electroanalysis, 7 (1995): 23–45. http://dx.doi.org/10.1002/elan.1140070104[Crossref]
  • [31] K. Kalcher, X. H. Cai, G. Koelbl, I. Švancara, and K. Vytřas, New trends in voltam-metric analysis: modified carbon paste electrodes. Sborník Vědeckých Prací, Vysoká Škola Chemickotechnologická; Pardubice, 57 (1994): 5–27.
  • [32] K. Kalcher, K. Schachl, I. Švancara, K. Vytřas, and H. Alemu, Recent progress in the development of electrochemical carbon paste sensors. Scientific Papers of the University of Pardubice, Series A; 3 (1997): 57–85.
  • [33] Z.-Q. Zhang, H. Liu, and Z.-F. Li, New developments of carbon paste electrode (Review). Fenxi Kexue Xuebao (Journal of Analytical Science), 14 (1998): 80–86; Chemical Abstracts, 125 (1998): 175403x.
  • [34] R. D. O’Neill, Sensor-tissue interactions in neurochemical analysis with carbon paste electrodes in vivo. Analyst (UK), 118 (1993): 433–438. http://dx.doi.org/10.1039/an9931800433[Crossref]
  • [35] C. D. Blaha, Evaluation of stearate-graphite paste electrodes for chronic measurement of extracellular dopamine concentrations in mammalian brain. Pharmacology, Biochemistry and Behavior, 55 (1996): 351–364. http://dx.doi.org/10.1016/S0091-3057(96)00104-9[Crossref]
  • [36] I. Švancara, J. Zima, and K. Schachl, The testing of carbon paste electrodes: an example on the characterization of a carbon paste electrode prepared from newly used graphite powder. Scientific Papers of the University of Pardubice, Series A; 4 (1998): 49–63.
  • [37] I. Švancara and K. Schachl, Testing of unmodified carbon paste electrodes. Chemické Listy, 93(199): 490–499.
  • [38] I. Švancara and K. Vytřas, Physico-chemical processes in analytical electrochemistry with carbon paste electrodes. An overview. Chemija (Vilnius), 11 (2000): 18–27.
  • [39] I. Švancara, K. Vytřas, J. Barek, and J. Zima, Carbon paste electrodes in modern electroanalysis. Critical Reviews in Analytical Chemistry, 31 (2001): 311–345. http://dx.doi.org/10.1080/20014091076785[Crossref]
  • [40] K. Kalcher, I. Švancara, R. Metelka, K. Vytřas, and A. Walcarius, Heterogeneous Electrochemical Carbon Sensors, in The Encyclopedia of Sensors, Vol. 4; eds. C. A. Grimes, E. C. Dickey, and M. V. Pishko (Stevenson Ranch: American Scientific Publishers, 2006), ch. 4, pp. 283–429.
  • [41] J. Zima, I. Švancara, J. Barek, and K. Vytřas, Recent Advances in Electroanalysis of Organic and Biological Compounds at Carbon Paste Electrodes. Critical Reviews in Analytical Chemistry, 39 (2009): 204–227. http://dx.doi.org/10.1080/10408340903011853[Crossref]
  • [42] G. U. Flechsig, M. Kienbaum, and P. Gruendler, Ex situ atomic force microscopy of bismuth film deposition at carbon paste electrodes. Electrochemistry Communations, 7 (2005) 1091–1097. http://dx.doi.org/10.1016/j.elecom.2005.08.003[Crossref]
  • [43] F. D. Munteanu, M. Mosbach, A. Schulte, W. Schuhmann, and L. Gorton, Fast-scan cyclic voltammetry and scanning electrochemical microscopy studies of the pH-dependent dissolution of 2-electron mediators immobilized on zirconium phosphate containing carbon pastes. Electroanalysis, 14 (2002): 1479–1487. http://dx.doi.org/10.1002/1521-4109(200211)14:21<1479::AID-ELAN1479>3.0.CO;2-T[Crossref]
  • [44] T. Mikysek, A. Ion, I. Švancara, K. Vytřas, and F. G. Banica, Carbonaceous Materials for Single-Use Metal Ion Sensors. Quality Assesment by Electrochemical Impedance Spectrometry; in Sensing in Electroanalysis, eds. K. Vytřas and K. Kalcher (Pardubice: University of Pardubice, 2005), pp. 19–27.
  • [45] J.-M. Zen, A. S. Kumar and H.-W. Chen, Electrochemical behavior of stable cinder/prussian blue analogue and its mediated nitrite oxidation. Electroanalysis, 13 (2001): 1171–1178. http://dx.doi.org/10.1002/1521-4109(200110)13:14<1171::AID-ELAN1171>3.0.CO;2-Q[Crossref]
  • [46] T. Mikysek, I. Švancara, M. Bartoš, K. Kalcher, K. Vytřas, J. Ludvík: “New Approaches to the Characterization of Carbon Paste Electrodes Based on Ohmic Resistance and Qualitative Carbon Paste Indexes”. Analytical Chemistry, 81 (2009): 6327–6333. http://dx.doi.org/10.1021/ac9004937[Crossref]
  • [47] J. Wang, Real-Time Electrochemical Monitoring: Toward Green Analytical Chemistry. Accounts of Chemical Research, 35 (2002): 811–816. http://dx.doi.org/10.1021/ar010066e[Crossref]
  • [48] J. Wang, Ü. A. Kirgöz, J.-W. Mo, J. Lu, A.N. Kawde, and A. Muck, Glassy carbon paste electrodes. Electrochem. Commun., 3 (2001): 203–208. http://dx.doi.org/10.1016/S1388-2481(01)00142-4[Crossref]
  • [49] S. Varma, C. K. Mitra, Low frequency impedance studies on covalently modified glassy carbon paste. Electroanalysis, 14 (2002): 1587–1596. http://dx.doi.org/10.1002/1521-4109(200211)14:22<1587::AID-ELAN1587>3.0.CO;2-W[Crossref]
  • [50] J. Zima, J. Barek, and A. Muck, Monitoring of environmentally and biologically important substances at carbon paste electrodes. Revista de Chimie (Bucharest), 55 (2005): 657–662.
  • [51] G. Li, Z.-M. Ji, and K.-B. Wu, Square wave anodic stripping voltammetric determination of Pb2+ using acetylene black paste electrode based on the inducing adsorption ability of I(-). Analytica Chimica Acta, 577 (2006): 178–182. http://dx.doi.org/10.1016/j.aca.2006.06.061[Crossref]
  • [52] G. Li, C.-D. Wan, Z.-M. Ji, and K.-B. Wu, An electrochemical sensor for Cd2+ based on the inducing adsorption ability of I(-). Sensors & Actuators B, Chemical; 124 (2007): 1–5. http://dx.doi.org/10.1016/j.snb.2006.11.033[Crossref]
  • [53] A. J. G. Zarbin, (Nano)materials chemistry. Quimica Nova, 30 (2007): 1469–1479. [Crossref]
  • [54] R. I. Stefan and S. G. Bairu, Monocrystalline diamond paste-based electrodes and their applications for the determination of Fe(II) in vitamins. Analytical Chemistry., 75 (2003): 5394–5398. http://dx.doi.org/10.1021/ac026300b[Crossref]
  • [55] R. I. Stefan, S. G. Bairu, and J. F. van Staden, Diamond Paste Based Electrodes for determination of iodide in vitamins and table salt. Analytical Letters, 36 (2003): 1493–1500. http://dx.doi.org/10.1081/AL-120021531[Crossref]
  • [56] R. I. Stefan, S. G. Bairu, and J. F. van Staden, Diamond paste-based electrodes for determination of Cr(III) in pharmaceutical compounds. Analytical and Bioanalytical Chemistry, 376 (2003): 844–847. http://dx.doi.org/10.1007/s00216-003-1974-2[Crossref]
  • [57] R. I. Stefan and R. G. Bokretsion, Determination of creatine and creatinine using a diamond paste based electrode. Instrumentation Science Technology, 31 (2003): 183–188. http://dx.doi.org/10.1081/CI-120020230[Crossref]
  • [58] R. I. Stefan and S. G. Bairu, Diamond paste based electrodes for the determination of chromium(VI) at trace levels. Instrumentation Science Technology, 31 (2003): 261–267. http://dx.doi.org/10.1081/CI-120022653[Crossref]
  • [59] R. I. Stefan and R. G. Bokretsion, Diamond paste based immunosensor for the determination of azidothymidine. Journal of Immunoassay and Immunochemistry, 24 (2003): 319–324. http://dx.doi.org/10.1081/IAS-120022941[Crossref]
  • [60] R. I. Stefan and S. G. Bairu, Diamond paste based electrodes for the determination of Pb(II) at trace concentration levels. Talanta, 63 (2004): 605–608. http://dx.doi.org/10.1016/j.talanta.2003.12.023[Crossref]
  • [61] R. I. Stefan, R. M. Nejem, J. F. van Staden, and H. Y. Aboul Enein, New ampero-metric biosensors based on diamond paste for the assay of L- and D-pipecolic acids in serum samples. Preparative Biochemistry and Biotechnology, 34 (2004): 135–143. http://dx.doi.org/10.1081/PB-120030872[Crossref]
  • [62] A. Miranda Hernández, M. E. Rincón, and I. González, Characterization of carbon-fullerene-silicone oil composite paste electrodes. Carbon, 43 (2005): 1961–1967. http://dx.doi.org/10.1016/j.carbon.2005.03.004[Crossref]
  • [63] S.V. Lokesh, B. S. Sherigara, A.T. Jayadev, H.M. Mahesh, and R.J. Mascarenhas, Electrochemical reactivity of C(60) modified carbon paste electrode by physical vapor deposition method. International Journal of Electrochemical Science, 3 (2008):578–587.
  • [64] S. B. Hočevar and B. Ogorevc, Preparation and characterization of carbon paste micro-electrode based on carbon nano-particles. Talanta, 74 (2007): 405–411. http://dx.doi.org/10.1016/j.talanta.2007.10.007[Crossref]
  • [65] G. Shul, M. A. Murphy, G. D. Wilcox, F. Marken, M. Opallo, Effects of carbon nanofiber composites on electrode processes involving liquid vertical bar liquid ion transfer. Journal of Solid State Electrochemistry, 9 (2005): 874–881. http://dx.doi.org/10.1007/s10008-005-0037-3[Crossref]
  • [66] G. A. Rivas, M. D. Rubianes, M. L. Pedano, N. F. Ferreyra, G. L. Luque, M. C. Rodriguez, and S. A. Miscoria, Carbon nanotubes paste electrodes: A New alternative for the development of electrochemical sensors. Electroanalysis, 19 (2007): 823–831. http://dx.doi.org/10.1002/elan.200603778[Crossref]
  • [67] F. Ricci, A. Amine, D. Moscone, and G. Palleschi, Prussian blue modified carbon nanotube paste electrodes: A Comparative study and a biochemical application. Analytical Letters, 36 (2003): 1921–1938. http://dx.doi.org/10.1081/AL-120023622[Crossref]
  • [68] R. Antiochia, I. Lavagnini, F. Magno, F. Valentini, and G. Palleschi, Single-wall carbon nanotube paste electrodes: A comparison with carbon paste, platinum and glassy carbon electrodes via cyclic voltammetric data. Electroanalysis, 16 (2004): 1451–1458. http://dx.doi.org/10.1002/elan.200302971[Crossref]
  • [69] N. S. Lawrence, R. P. Deo, and J. Wang, Detection of homocysteine at carbon nanotube paste electrodes. Talanta, 63 (2004): 443–449. http://dx.doi.org/10.1016/j.talanta.2003.11.024[Crossref]
  • [70] M. D. Rubianes and G. A. Rivas, Enzymatic biosensors based on carbon nanotubes paste electrodes. Electroanalysis, 17 (2005): 73–78. http://dx.doi.org/10.1002/elan.200403121[Crossref]
  • [71] M. Chicharro, E. Bermejo, M. Moreno, A. Sanchez, A. Zapardiel, and G. A. Rivas, Adsorptive stripping voltammetric determination of amitrole at a multi-wall carbon nanotubes paste electrode. Electroanalysis, 17 (2005): 476–482. http://dx.doi.org/10.1002/elan.200403172[Crossref]
  • [72] S.-Y. Ly, S.-K. Kim, T.-H. Kim, Y.-S. Jung, and S.-M. Lee, Measuring mercury ion concentration with a carbon nano tube paste electrode using the cyclic voltam-metry method. Journal of Applied Electrochemistry, 35 (2005): 567–571. http://dx.doi.org/10.1007/s10800-005-2058-0[Crossref]
  • [73] R. Antiochia, I. Lavagnini, and F. Magno, Electrocatalytic oxidation of NADH at single-wall carbon-nanotube-paste electrodes: kinetic considerations for use of redox mediator in solution and dissolved in the paste. Anal. Bioanal. Chem., 381 (2005): 1355–1361. http://dx.doi.org/10.1007/s00216-005-3079-6[Crossref]
  • [74] J.-B. He, X.-Q. Lin, and J. Pan, Multi-wall carbon nanotube paste electrode for adsorptive stripping determination of quercetin: A comparison with graphite paste electrode via voltammetry and chronopotentiometry. Electroanalysis, 17 (2005): 1681–1686. http://dx.doi.org/10.1002/elan.200503274[Crossref]
  • [75] M. Chicharro, A. Sanchez, E. Bermejo, A. Zapardiel, M. D. Rubianes, and G. A. Rivas, Carbon nanotubes paste electrodes as new detectors for capillary electrophoresis. Analytica Chimica Acta, 543 (2005): 84–91. http://dx.doi.org/10.1016/j.aca.2005.04.031[Crossref]
  • [76] F. Kurusu, S. Koide, I. Karube, and M. Gotoh, Electrocatalytic activity of bamboo-structured carbon nanotubes paste electrode toward hydrogen peroxide. Analytical Letters, 39 (2006): 903–911. http://dx.doi.org/10.1080/00032710600609651[Crossref]
  • [77] R. Antiochia and I. Lavagnini, Alcohol biosensor based on the immobilization of meldola mlue and alcohol dehydrogenase into a carbon nanotube paste electrode. Analytical Letters, 39 (2006): 1643–1655. http://dx.doi.org/10.1080/00032710600713537[Crossref]
  • [78] X.-J. Tian, J.-F. Song, X.-J. Luan, Y.-Y. Wang, and Q. Z. Shi, Selective detection of dopamine in the presence of ascorbic acid by use of glassycarbon electrodes modified with both polyaniline film and multi-walled carbon nanotubes with incorporated β-cyclodextrin. Analytical and Bioanalytical Chemistry, 386 (2006): 2081–2094. http://dx.doi.org/10.1007/s00216-006-0869-4[Crossref]
  • [79] X.-Q. Lin, J.-B. He, and Z. G. Zha, Simultaneous determination of quercetin and rutin at a multi-wall carbon-nanotube paste electrodes by reversing differential pulse voltammetry. Sensors & Actuators B, Chemical; 119 (2006): 608–614. http://dx.doi.org/10.1016/j.snb.2006.01.016[Crossref]
  • [80] G. L. Luque, N. F. Ferreyra, and G. A. Rivas, Glucose biosensor based on the use of a carbon nanotube paste electrode modified with metallic particles. Microchimica Acta, 152 (2006): 277–283. http://dx.doi.org/10.1007/s00604-005-0447-z[Crossref]
  • [81] S.-Y. Ly, Detection of dopamine in the pharmacy with a carbon nanotube paste electrode using voltammetry. Bioelectrochemistry, 68 (2006): 227–231. http://dx.doi.org/10.1016/j.bioelechem.2005.09.002[Crossref]
  • [82] R. T. Kachoosangi, G. G. Wildgoose, and R. G. Compton, Room temperature ionic liquid carbon nanotube paste electrodes: Overcoming large capacitive currents using rotating disk electrodes. Electroanalysis, 19(2007): 1483–1489. [Crossref]
  • [83] L. Zheng and J. F. Song, Voltammetric behavior of urapidil and its determination at multi-wall carbon nanotube paste electrode. Talanta, 73 (2007): 943–947. http://dx.doi.org/10.1016/j.talanta.2007.05.015[Crossref]
  • [84] J.-Y. Qu, X.-Q. Zou, B.-F. Liu, and S.-J. Dong, Assembly of polyoxometalates on carbon nanotubes paste electrode and its catalytic behaviors. Analytical Chimica Acta, 599 (2007): 51–57. http://dx.doi.org/10.1016/j.aca.2007.07.072[Crossref]
  • [85] S.-Y. Ly, Y.-S. Jung, S.-K. Kim, and H.-K. Lee, Trace analysis of lead and copper ions in fish tissue using paste electrodes. Analytical Letters, 40 (2007): 2683–2692. http://dx.doi.org/10.1080/00032710701588184[Crossref]
  • [86] S. Shahrokhian and M. Amiri, Multi-walled carbon nanotube paste electrode for selective voltammetric detection of isoniazid. Microchimica Acta, 157 (2007): 149–158. http://dx.doi.org/10.1007/s00604-006-0665-z[Crossref]
  • [87] R. Antiochia and L. Gorton, Development of a carbon nanotube paste electrode osmium polymer-mediated biosensor for determination of glucose in alcoholic beverages. Biosensors & Bioelectronics, 22 (2007): 2611–2617. http://dx.doi.org/10.1016/j.bios.2006.10.023[Crossref]
  • [88] J.-H. Chen, Z.-Y. Lin, and G.-N. Chen, An electrochemiluminescent sensor for glucose employing a modified carbon nanotube paste electrode. Analytical and Bioanalytical Chemistry, 388 (2007): 399–407. http://dx.doi.org/10.1007/s00216-007-1202-6[Crossref]
  • [89] A. Abbaspour and R. Mirzajani, Electrochemical monitoring of piroxicam in different pharmaceutical forms with multi-walled carbon nanotubes paste electrode. Journal of Pharmaceutical and Biomedical Analysis, 44 (2007): 41–48. http://dx.doi.org/10.1016/j.jpba.2007.01.027[Crossref]
  • [90] L.-B. Nie, H.-S. Gu, Q.-G. He, J.-R. Chen, and Y.-Q. Miao, Enhanced electrochemical detection of DNA hybridization with carbon nanotube modified paste electrode. Journal of Nanoscience and Nanotechnology, 7 (2007): 560–564. http://dx.doi.org/10.1166/jnn.2007.126[Crossref]
  • [91] Y.-T. Chen, Z.-N. Lin, J.-H. Chen, J.-J. Sun, L. Zhang, and G.-N. Chen, New capillary electrophoresis-electrochemiluminescence detection system equipped with an electrically heated Ru(bpy)3(2+)/multi-wall-carbonnanotube paste electrode. Journal of Chromatography A, 1172 (2007): 84–91. http://dx.doi.org/10.1016/j.chroma.2007.09.049[Crossref]
  • [92] R. T. Kachoosangi, L. Xiao, G. G. Wildgoose, F. Marken, P. C. B. Page, and R. G. Compton, A new method of studying ion transfer at liquid liquid phase boundaries using a carbon nanotube paste electrode with a redox active binder. Journal of Physical Chemistry C, 111 (2007): 18353–18360. http://dx.doi.org/10.1021/jp0763275[Crossref]
  • [93] S.-Y. Ly, C.-H. Lee, and Y.-S. Jung, Measuring oxytetracycline using a simple prepared DNA immobilized on a carbon nanotube paste electrode in fish tissue Journal of the Korean Chemical Society, 51 (2007): 412–417.
  • [94] S.-Y. Ly, Diagnosis of copper ions in vascular tracts using a fluorine-doped carbon nanotube sensor. Talanta, 74 (2008): 1635–1641. http://dx.doi.org/10.1016/j.talanta.2007.10.017[Crossref]
  • [95] S. Shahrokhian, Z. Kamalzadeh, A. Bezaatpour, and D. M. Boghaei, Differential pulse voltammetric determination of N-acetylcysteine by the electrocatalytic oxidation at the surface of carbon nanotube-paste electrode modified with cobalt salophen complexes. Sensors & Actuators B, Chemical; 133 (2008): 599–606. http://dx.doi.org/10.1016/j.snb.2008.03.034[Crossref]
  • [96] J.-N. Xie, S.-Y. Wang, L. Aryasomayajula, and V.-K. Varadan, Effect of nano-materials in platinum-decorated carbon nanotube pastebased electrodes for amperometric glucose detection. Journal of Material Research, 23 (2008): 1457–1465. http://dx.doi.org/10.1557/jmr.2008.0177[Crossref]
  • [97] H. Ibrahim, Carbon paste electrode modified with silver thimerosal for the potentiometric flow injection analysis of silver(I) ion. Analytica Chimica Acta, 545 (2005): 158–165. http://dx.doi.org/10.1016/j.aca.2005.04.083[Crossref]
  • [98] R. Metelka, S. Slavíková, K. Vytřas, Determination of arsenate and organic arsenic via potentiometric titration of its heteropolyanions. Talanta, 58 (2002): 147–151. http://dx.doi.org/10.1016/S0039-9140(02)00263-1[Crossref]
  • [99] J. Konvalina, K. Vytřas, Reductive Determination of gold at carbon paste electrode using constantcurrent stripping analysis. Chemické Listy, 95 (2001): 505–508.
  • [100] I. Švancara, K. Vytřas, Determination of iodide in potassium iodide dosage tablets using cathodic stripping voltammetry with a carbon paste electrode. Scientific Papers of the University of Pardubice, Series A; 7 (2001): 5–15.
  • [101] I. Švancara, B. Ogorevc, M. Novič, and K. Vytřas, Simple and rapid determination of iodide in table salts containing anticaking agents using stripping potentio-metry with selective sensing at a carbon paste electrode. Analytical and Bioanalytical Chemistry, 372 (2002): 795–800. http://dx.doi.org/10.1007/s00216-002-1263-5[Crossref]
  • [102] I. Švancara, K. Vytřas, and K. Kalcher, Half-decade of carbon paste electrodes in fact and interesting glosses. Atypical reminiscence of an electrochemical and electroanalytical jubilee (in Czech); in Modern Electrochemical Methods - XXVIII, Book of Abstracts. eds. J. Barek and T. Navrátil. (Prague: Czech Chemical Society, 2008), pp. 114–115.
  • [103] R. J. Mascarenhas, A. K. Satpati, S. Yellappa, B. S. Sherigara, and A. K. Bopiah, Wax-impregnated carbon paste electrode modified with mercuric oxalate for the simultaneous determination of heavy metal ions in medicinal plants and ayurvedic tablets. Analytical Sciences (Japan), 22 (2006): 871–875. http://dx.doi.org/10.2116/analsci.22.871[Crossref]
  • [104] R. M. Takeuchi, A. L. Santos, P. M. Padilha, and N. R. Stradiotto, Copper determination in ethanol fuel by differential pulse anodic stripping voltammetry at a solid paraffin-based carbon paste electrode modified with 2-aminothiazole organo-functionalized silica. Talanta, 71 (2007): 771–777. http://dx.doi.org/10.1016/j.talanta.2006.05.035[Crossref]
  • [105] R. M. Takeuchi, A. L. Santos, P. M. Padilha, and N. R. Stradiotto, A solid paraffin-based carbon paste electrode modified with 2-aminothiazole organofunctionalized silica for differential pulse adsorptive stripping analysis of nickel(II) in ethanol fuel. Analytica Chimica Acta, 584 (2007): 295–301. http://dx.doi.org/10.1016/j.aca.2006.11.069[Crossref]
  • [106] W. Yantasee, Y.-H. Lin, G. E. Fryxell, and Z.-M. Wang, Carbon paste electrode modified with carbamoylphosphonic acid functionalized mesoporous silica: A new mercury-free sensor for uranium detection. Electroanalysis, 16 (2004) 870–873. http://dx.doi.org/10.1002/elan.200302868[Crossref]
  • [107] H.-L. Liu, Chemically modified carbon paste sensor for aluminium(III) and its application. Fenxi Huaxue (Chinese Journal of Analytical Chemistry), 31 (2003): 1511–1513.
  • [108] B. Blankert, O. Domínguez, W. El Ayyas, J. Arcos, and J.-M. Kauffmann, Horseradish peroxidase electrode for the analysis of clozapine. Analytical Letters, 37 (2004): 903–913. http://dx.doi.org/10.1081/AL-120030286[Crossref]
  • [109] T. K. Malongo, S. Patris, P. Macours, F. Cotton, J. Nsangu, and J.-M. Kauffmann, Highly sensitive determination of iodide by ion chromatography with ampero-metric detection at a silver-based carbon paste electrode. Talanta, 76 (2008): 540–547. http://dx.doi.org/10.1016/j.talanta.2008.03.053[Crossref]
  • [110] K. Grennan, A. J. Killard, and M. R. Smyth, Physical characterizations of a screen-printed electrode for use in an amperometric biosensor system. Electroanalysis, 13 (2001): 745–750. http://dx.doi.org/10.1002/1521-4109(200105)13:8/9<745::AID-ELAN745>3.0.CO;2-B[Crossref]
  • [111] G. Cui, J.-H. Yoo, B.-W. Woo, S.-S. Kim, G.-S. Cha, and H. Nam, Disposable amperometric glucose sensor electrode with enzyme-immobilized nitrocellulose strip. Talanta, 54 (2001): 1105–1111. http://dx.doi.org/10.1016/S0039-9140(01)00377-0[Crossref]
  • [112] P. Fanjul Bolado, D. Hernández Santos, P. J. Lamas Ardisana, A. Martin Pernia, A. Costa García, Electro-chemical characterization of screen-printed and conventional carbon paste electrodes. Electrochimica Acta, 53 (2008): 3635–3642. http://dx.doi.org/10.1016/j.electacta.2007.12.044[Crossref]
  • [113] I. Švancara, R. Metelka, M. Stibůrková, J. Seidlová, G. Jansová, K. Vytřas, and B. Pihlar, Carbon paste electrodes and screen-printed sensors plated with mercury- and bismuth films in stripping voltammetry of heavy metals. Scientific Papers of the University of Pardubice, Series A; 8 (2002) 19–33.
  • [114] D. Wei and A. Ivaska, Applications of ionic liquids in electrochemical sensors. A Review. Analytica Chimica Acta, 607 (2008): 126–135. http://dx.doi.org/10.1016/j.aca.2007.12.011[Crossref]
  • [115] H.-T. Liu, P. He, Z.-Y. Li, C.-N. Sun, L.-H. Shi, Y. Liu, G.-Y. Zhu, and J.-H. Li, An ionic liquid-type carbon paste electrode and its polyoxometalate-modified properties. Electrochemistry Communations, 7 (2005): 1357–1363. http://dx.doi.org/10.1016/j.elecom.2005.09.018[Crossref]
  • [116] G. Shul, J. Sirieix Plenet, L. Gaillon, and M. Opallo, Ion transfer at carbon paste electrode based on ionic liquid. Electrochemistry Communications, 8 (2006): 1111–1114. http://dx.doi.org/10.1016/j.elecom.2006.05.002[Crossref]
  • [117] N. Maleki, A. Safavi, and F. Tajabadi, High-performance carbon composite electrode based on an ionic liquid as a binder. Analytical Chemistry, 78 (2006): 3820–3826. http://dx.doi.org/10.1021/ac060070+[Crossref]
  • [118] A. Safavi, N. Maleki, O. Moradlou, and F. Tajabadi, Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode. Analytical Biochemistry, 359 (2006): 224–229. http://dx.doi.org/10.1016/j.ab.2006.09.008[Crossref]
  • [119] A. Safavi, N. Maleki, F. Honarasa, F. Tajabadi, and F. Sedaghatpour, Ionic liquids modify the performance of carbon based potentiometric sensors. Electroanalysis, 19 (2007): 582–586. http://dx.doi.org/10.1002/elan.200603767[Crossref]
  • [120] W. Sun, M.-X. Yang, R.-F. Gao, and K. Jiao, Electrochemical determination of ascorbic acid in room temperature ionic liquid BPPF6 modified carbon paste electrode. Electroanalysis, 19 (2007): 1597–1602. http://dx.doi.org/10.1002/elan.200703889[Crossref]
  • [121] N. Maleki, A. Safavi, and F. Tajabadi, Investigation of the role of ionic liquids in imparting electrocatalytic behavior to carbon paste electrode. Electroanalysis, 19 (2007): 2247–2250. http://dx.doi.org/10.1002/elan.200703952[Crossref]
  • [122] J.-B. Zheng, Y. Zhang, and P.-P. Yang, An ionic liquid-type carbon paste electrode for electrochemical investi-gation and determination of calcium dobesilate. Talanta, 73 (2007): 920–925. http://dx.doi.org/10.1016/j.talanta.2007.05.016[Crossref]
  • [123] A. Safavi, N. Maleki, and F. Tajabadi, Highly stable electrochemical oxidation of phenols at carbon ionic liquid electrode. Analyst (UK), 132 (2007): 54–58. http://dx.doi.org/10.1039/b612672c[Crossref]
  • [124] J. Li, M.-H. Huang, X.-Q. Liu, H. Wei, Y.-H. Xu, G.-B. Xu, and E.-K. Wang, Enhanced electrochemiluminescence sensor from tris(2,2′-bipyridyl)Ru(II) incorporated into MCM-41 and ionic liquid-based carbon paste electrode. Analyst (UK), 132 (2007): 687–691. http://dx.doi.org/10.1039/b701842h[Crossref]
  • [125] S.-F. Wang, H.-Y. Xiong, and Q.-X. Zeng, Design of carbon paste biosensors based on the mixture of ionic liquid and paraffin oil as a binder for high performance and stabilization. Electrochemistry Communications, 9 (2007): 807–812. http://dx.doi.org/10.1016/j.elecom.2006.11.010[Crossref]
  • [126] W. Sun, D.-D. Wang, R.-F. Gao, and K. Jiao, Direct electrochemistry and electro-catalysis of hemoglobin in sodium alginate film on a BMIMPF6 modified carbon paste electrode. Electrochemistry Communications, 9 (2007): 1159–1164. http://dx.doi.org/10.1016/j.elecom.2007.01.003[Crossref]
  • [127] Y. Zhang, J.-B. Zheng, Comparative investigation on electrochemical behavior of hydroquinone at carbon ionic liquid electrode, ionic-liquid modified-, and the bare carbon paste electrode. Electrochimica Acta, 52 (2007): 7210–7216. http://dx.doi.org/10.1016/j.electacta.2007.05.039[Crossref]
  • [128] W. Sun, R.-F. Gao, and K. Jiao, Electrochemistry and electrocatalysis of hemoglobin in nafion/nano-CaCO3 film on a new ionic liquid BPPF6 Modified Carbon Paste Electrode. Journal of Physical Chemistry B, 111 (2007): 4560–4567. http://dx.doi.org/10.1021/jp067933n[Crossref]
  • [129] W. Sun, M.-X. Yang, and K. Jiao, Electrocatalytic oxidation of dopamine at an ionic liquid modified carbon paste electrode and its analytical application. Analytical and Bioanalytical Chemistry, 389 (2007): 1283–1291. http://dx.doi.org/10.1007/s00216-007-1518-2[Crossref]
  • [130] Y. Zhang and J.-B. Zheng, An ionic liquid bulk-modified carbon paste electrode and its electrocatalytic activity toward p-aminophenol. Chinese Journal of Chemistry (Shanghai), 25 (2007): 1652–1657.
  • [131] W. Sun, R.-F. Gao, D.-D. Wang, and K. Jiao, Direct electrochemistry of hemoglobin at room temperature ionic liquid [BMIM]PF6 modified carbon paste electrode. Wuli Huaxue Xuebao (Chinese Acta Physica Chimica), 23 (2007): 1247–1251.
  • [132] X.-Z. Zhang, K. Jiao, and X.-L. Wang, Paste electrode based on short single-walled carbon nanotubes and room temperature ionic liquid: preparation, characterization and application in DNA detection. Electroanalysis, 20 (2008): 1361–1366. http://dx.doi.org/10.1002/elan.200704190[Crossref]
  • [133] M. Musameh and J. Wang, Sensitive and stable amperometric measurements at ionic liquidcarbon paste microelectrodes. Anal. Chim. Acta, 606 (2008): 45–49. http://dx.doi.org/10.1016/j.aca.2007.11.012[Crossref]
  • [134] M. M. Musameh, R. T. Kachoosangi, and R. G. Compton, Enhanced stability and sensitivity of ionic liquid-carbon paste electrodes at elevated temperatures. Analyst (UK), 133 (2008): 133–138. http://dx.doi.org/10.1039/b713071f[Crossref]
  • [135] W. Sun, Y.-Z. Li, M.-X. Yang, S.-F. Liu, and K. Jiao, Direct electrochemistry of single-stranded DNA on an ionic liquid modified carbon paste electrode. Electrochemistry Communications, 10 (2008): 298–301. http://dx.doi.org/10.1016/j.elecom.2007.12.012[Crossref]
  • [136] G. Shang, D. Xiao, H.-F. Zhang, and J.-B. Zheng, Electrochemical behavior and differential pulse voltammetric determination of Paracetamol at a carbon ionic liquid electrode. Analytical and Bioanalytical Chemistry, 391 (2008): 1049–1055. http://dx.doi.org/10.1007/s00216-008-2096-7[Crossref]
  • [137] S.-S. Fan, F. Xiao, L. Liu, F.-Q. Zhao, and B.-Z. Zeng, Sensitive voltammetric response of methylparathion on single-walled carbon nanotube paste coated electrodes using ionic liquid as binder. Sensors & Actuators B, Chemical; 132 (2008): 34–39. http://dx.doi.org/10.1016/j.snb.2008.01.010[Crossref]
  • [138] M. M. Musameh, R. T. Kachoosangi, L. Xiao, A. Russell, and R. G. Compton, Ionic liquidcarbon composite glucose biosensor. Biosensors & Bioelectronics, 24 (2008): 87–92. http://dx.doi.org/10.1016/j.bios.2008.03.015[Crossref]
  • [139] W. Sun, Q. Jiang, M.-X. Yang, and K. Jiao, Electrochemical behaviors of hydro-quinone on a carbon paste electrode with ionic liquid as binder. Bulletin of the Korean Chemical Society, 29 (2008): 915–920. [Crossref]
  • [140] H. Zhang, G.-P. Cao, Y.-S. Yang, and Z.-N. Gu, The capacitive performance of an ultralong (aligned) carbon nanotube electrode in an ionic liquid at 60oC. Carbon, 46 (2008): 30–34. http://dx.doi.org/10.1016/j.carbon.2007.10.023[Crossref]
  • [141] I. Švancara, R. Metelka, and K. Vytřas, K., Piston-driven carbon paste electrode holders for electrochemical measurements; in Sensing in Electroanalysis. eds. K. Vytřas and K. Kalcher. (Pardubice: University of Pardubice, 2005), pp. 7–18.
  • [142] J. Oni, P. Westbroek, and T. Nyokong, Construction and characterization of carbon paste ultramicro-electrodes. Electrochemistry Communications, 3 (2001): 524–528. http://dx.doi.org/10.1016/S1388-2481(01)00212-0[Crossref]
  • [143] L. Baldrianová, I. Švancara, and S. Sotiropoulos, Anodic stripping voltammetry at a new type of disposable bismuth-plated carbon paste minielectrodes. Analytica Chimica Acta, 599 (2007): 249–255. http://dx.doi.org/10.1016/j.aca.2007.07.067[Crossref]
  • [144] J. Zima, H. Dejmková, and J. Barek, HPLC determination of naphthalene amino derivatives using electrochemical detection at carbon paste electrodes. Electroanalysis, 19 (2007): 185–190. http://dx.doi.org/10.1002/elan.200603690[Crossref]
  • [145] I. Švancara, P. Kotzian, M. Bartoš, and K. Vytřas, Groove electrodes: A new alternative of using carbon paste in electroanalysis. Electrochemistry Communications, 7 (2005): 657–662. http://dx.doi.org/10.1016/j.elecom.2005.04.017[Crossref]
  • [146] I. Švancara, P. Kotzian, R. Metelka, M. Bartoš, P. Foret, and K. Vytřas, Plastic bars with carbon paste: A new type of the working electrode in electroanalysis (in Czech); in Monitoring of Environmental Pollutants - IV, eds. K. Vytřas, J. Kellner, and J. Fischer. (Pardubice: University of Pardubice, 2002), pp. 145–158.
  • [147] R. Metelka, M. Žeravík, and K. Vytřas, Groove electrodes filled with carbon paste in flow injection analysis (in Czech); in Monitoring of Environmental Pollutants - X, eds. K. Vytřas, J. Kellner, and J. Fischer. (Pardubice: University Pardubice, 2008), pp. 153–158.
  • [148] G. U. Flechsig, O. Korbout, S. B. Hočevar, S. Thongngamdee, B. Ogorevc, P. Gründler, and J. Wang, Electrically heated bismuth-film electrode for voltammetric stripping measurements of trace metals. Electroanalysis, 14 (2002): 192–196. http://dx.doi.org/10.1002/1521-4109(200202)14:3<192::AID-ELAN192>3.0.CO;2-6[Crossref]
  • [149] D.C. Dunwoody, M. Unlu, A. K. H.. Wolf, W. L. Gellett, and J. Leddy, Magnet incorporated carbon electrodes: Methods for construction and demonstration of increased electrochemical flux. Electroanalysis, 17 (2005): 1487–1494. http://dx.doi.org/10.1002/elan.200503297[Crossref]
  • [150] B.-Y. Yang, J.-Y. Mo, and R. Lai, Determination of environmental nitrophenols by dual-electrode and dual-channel electrochemical detection in capillary electrophoresis with a carbon paste electrode. Gaodeng Xuexiao Huaxue Xuebao (Chemical Journal of Chinese Universities), 26 (2005): 227–230.
  • [151] Gy. Svehla: Vogel’s Qualitative Inorganic Analysis, 7th Ed., revised and extended. (Singapore: Longman Publi-shing, 1996).
  • [152] Y.-N. Zeng, N. Zheng, P. G. Osborne, Y.-Z. Li, W.-B. W.-B. Chang, and Z.-M. Wang, Preparation and cyclic voltammetry characterization of Cu(I)-dipyridyl imprinted polymer. Chinese Chemistry Letters, 13 (2002): 317–320.
  • [153] M. H. Mashhadizadeh, A. Mostafavi, H. Allah Abadi, and I. Sheikh-shoai, New Schiff base modified carbon paste and coated wire PVC membrane for silver ion. Sensors & Actuators B, Chemical; 113 (2006): 930–936. http://dx.doi.org/10.1016/j.snb.2005.04.017[Crossref]
  • [154] L.-D. Li, W.-J. Li, C.-Q. Sun, and L.-S. Li, Fabrication of carbon paste electrode containing 1:12 phospho-molybdic anions encapsulated in modified mesoporous molecular sieve MCM-41 and its electrochemistry. Electroanalysis, 14 (2002): 368–375. http://dx.doi.org/10.1002/1521-4109(200203)14:5<368::AID-ELAN368>3.0.CO;2-I[Crossref]
  • [155] S.-X. Liu, C.-M. Wang, D.-H. Li, Z.-M. Su, E.-B. Wang, N.-H. Hu, and H.-Q. Jia, Synthesis, structure and properties of a novel supramolecular compound. Acta Chimica Sinica (Shanghai), 62 (2004): 1305–1310.
  • [156] Z.-G. Han, Y.-L. Zhao, J. Peng, Q. Liu, and E.-B. Wang, Inorganic-organic hybrid polyoxometalate containing supramolecular helical chains: Preparation, characterization and application in chemically bulk-modified electrode. Electrochimica Acta, 51 (2005): 218–224. http://dx.doi.org/10.1016/j.electacta.2005.04.016[Crossref]
  • [157] L.-Y. Duan, F.-C. Liu, X.-L. Wang, E.-B. Wang, C. Qin, Y.-G. Li, X.-L. Wang, and C.-W. Hu, A new 3-D cadmium molybdenum phosphate with intersecting tunnels: hydro-thermal synthesis, structure and electrochemical properties of the [C3H12N2]4[CdMo12O24 (HPO4)6(PO4)2(OH)6][(Cd(H2O)2]x3H2O compound. Journal of Molecular Structure, 705 (2004):15–20. http://dx.doi.org/10.1016/j.molstruc.2004.03.030
  • [158] B. Keita, P. de Oliveira, L. Nadjo, and U. Kortz, The ball-shaped heteropolytungstates [{Sn(CH3) (2)(H2O)} (24){Sn(CH3)(2)}(12)-(A-XW9O34) (12)](36-) (X = P, As): Stability, redox and catalytic properties in aqueous media. Chemistry - A European Journal (Wiley), 13 (2007): 5480–5491. http://dx.doi.org/10.1002/chem.200601870[Crossref]
  • [159] B.-X. Dong, J. Peng, A.-X. Tian, J.-Q. Sha, L. Li, and H.-S. Liu, Two new inorganic-organic hybrid single pendant hexadecavanadate derivatives with bifunctional electrocatalytic activities. Electrochimica Acta, 52 (2007): 3804–3812. http://dx.doi.org/10.1016/j.electacta.2006.10.065[Crossref]
  • [160] X.-Y. Zhao, D.-D. Liang, S.-X. Liu, C.-Y. Sun, R.-G. Cao, C.-Y. Gao, Y.-H. Ren, and Z.-M. Su, Two Dawson-templated 3-D metalorganic frameworks based on oxalate-bridged binuclear Co(II)/Ni(II) SBUs and bpy-linkers. Inorganic Chemistry, 47 (2008): 133–138. [Crossref]
  • [161] E. S. Ribeiro, Y. Gushikem, J. C. Biazzotto, and O. A. Serra, Electrochemical properties and dissolved oxygen reduction study on FeIII-tetra(oureaphenyl) porphyrinosilica matrix surface, Journal of Porphyrins & Phthalocyanines, 6 (2002): 527–532. http://dx.doi.org/10.1142/S1088424602000658[Crossref]
  • [162] C. A. Pessoa, Y. Gushikem, and S. Nakagaki, Cobalt porphyrin immobilized on a niobium(V) oxide grafted-silica gel surface: Study of the catalytic oxidation of hydrazine. Electroanalysis, 14 (2002): 1072–1076. http://dx.doi.org/10.1002/1521-4109(200208)14:15/16<1072::AID-ELAN1072>3.0.CO;2-X[Crossref]
  • [163] C.-Y. Li, Y. Chen, C.-F. Wang, H.-B. Li, and Y.-Y. Chen, Electrocatalytic oxidation of H2O2 at a carbon paste electrode modified with a Ni(II)-calix[4]arene complex and its application. Wuhan University, Journal of Natural Sciences; 8 (2003): 857–860. http://dx.doi.org/10.1007/BF02903693[Crossref]
  • [164] D. Munteanu, D. Dicu, I. C. Popescu, and L. Gorton, NADH oxidation using carbo-naceous electrodes modified with dibenzo-dithia-diazapentacene. Electroanalysis, 15 (2003): 383–391. http://dx.doi.org/10.1002/elan.200390044[Crossref]
  • [165] E. S. Gil and L. T. Kubota, Electrochemical properties of Doyle catalyst immobilized on carbon paste in the presence of DNA. Bioelectrochemistry, 51 (2001): 145–149. http://dx.doi.org/10.1016/S0302-4598(00)00067-2[Crossref]
  • [166] V. Parra, T. del Cano, M. L. Rodríguez Mendez, J. A. de Saja, and R. F. Aroca, Electrochemical characterization of two perylenetetracarboxylic diimides: Langmuir-Blodgett films and carbon paste electrodes. Chemistry of Materials, 16 (2004): 358–364. http://dx.doi.org/10.1021/cm0347786[Crossref]
  • [167] C.-X. Lei, S.-Q. Hu, G.-L. Shen, and R.-Q. Yu, Immobilization of horseradish peroxidase to a nano-Au monolayer / chitosan- modified carbon paste electrode for the detection of hydrogen peroxide. Talanta, 59 (2003): 981–988. http://dx.doi.org/10.1016/S0039-9140(02)00641-0[Crossref]
  • [168] J. Li, L.-T. Xiao, X.-M. Liu, G.-M. Zeng, G.-H. Huang, G.-.L. Shen, and R.-Q. Yu, Amperometric biosensor with HRP immobilized on a sandwiched nano-Au polymerized film and ferrocene mediator. Analytical and Bioanalytical Chemistry, 376 (2003): 902–907. http://dx.doi.org/10.1007/s00216-003-1989-8[Crossref]
  • [169] H. Remita, P. F. Siril, I. M. Mbomekalle, B. Keita, and L. Nadjo, Activity evaluation of carbon paste electrodes loaded with Pt-nanoparticles prepared in different radiolytic conditions. Journal of Solid State Electrochemistry, 10 (2006): 506–511. http://dx.doi.org/10.1007/s10008-005-0005-y[Crossref]
  • [170] J.-Z. Xu, J.-J. Zhu, H. Wang, and H.-Y. Chen, Nano-sized copper oxide modified carbon paste electrodes as an amperometric sensor for amikacin. Analytical Letters, 36 (2003): 2723–2733. http://dx.doi.org/10.1081/AL-120025251[Crossref]
  • [171] D. R. do Carmo, L. L. Paim, N. L. Dias, and N. R. Stradiotto, Preparation, characte-rization and application of a nanostructured composite: Octakis-(cyanopropyldimethyl-siloxy)octa-silsesquioxane. Applied Surface Science, 253 (2007): 3683–3689. http://dx.doi.org/10.1016/j.apsusc.2006.07.080[Crossref]
  • [172] D.-P. Tang, R. Yuan, and Y.-Q. Chai, Magnetic core-shell Fe3O4@Ag nanoparticles coated carbon paste interface for studies of carcinoembryonic antigen in clinical immunoassay. Journal of Physical Chemistry B, 110 (2006): 11640–11646. http://dx.doi.org/10.1021/jp060950s[Crossref]
  • [173] W. Sun, D.-D. Wang, J.-H. Zhong, and K. Jiao, Electrocatalytic activity of hemoglobin in sodium alginate / SiO2 nanoparticle / ionic liquid BMIM-PF6 composite film. Journal of Solid State Electrochemistry, 12 (2008): 655–661. http://dx.doi.org/10.1007/s10008-007-0395-0[Crossref]
  • [174] X.-L, Wang., Z.-H. Kang, E.-B. Wang, C.-W. Hu, Preparation of chemically bulk-modified electrode based on hybrid silicomolybdate nanoparticles for the detection of nitrite. Material Letters, 56 (2002): 393–396. [Crossref]
  • [175] X.-L. Wang., Z.-H. Kang, E.-B. Wang, C.-W. Hu, Inorganic-organic hybrid 18-molybdodiphosphate nanoparticles bulk-modified carbon paste electrode and its electro-catalytic properties. Chinese Journal of Chemistry (Shanghai), 20 (2002): 777–783.
  • [176] X.-L. Wang., Z.-H. Kang, Y. Lan, and E.-B. Wang, Molybdo-vanado-phosphate tetraethyl-ammonium nanoparticles bulk-modified carbon paste electrode and its electrocatalysis toward the reduction of hydrogen peroxide. Fenxi Huaxue (Chinese Journal of Analytical Chemistry, 31 (2003): 941–944.
  • [177] L. Wang, M. Jiang, E.-B. Wang, S.-Y. Lian, L. Xu, and Z. Li, Synthesis and characte-rization of nanoporous ultrathin multilayer films based on molybdenum polyoxometalate (Mo-36)n. Material Letters, 58 (2004): 683–687. http://dx.doi.org/10.1016/j.matlet.2003.06.005[Crossref]
  • [178] X.-L. Wang, H.-Y. Zhao, and Y.-F. Wang, Preparation, electrochemical property and application in bulk-modified electrode of Dawson-type phosphomolybdate-doped polypyrrole composite nanoparticles. Gaodeng Xuexiao Huaxue Xuebao (Chemical Research in Chinese Universities), 22 (2006): 556–559. http://dx.doi.org/10.1016/S1005-9040(06)60161-X[Crossref]
  • [179] Z.-G. Han, Y.-L. Zhao, J. Peng, Q. Liu, and E.-B. Wang, Inorganic-organic hybrid polyoxo-metalate containing supramolecular helical chains: Preparation, characterization and application in chemically bulk-modified electrode. Electrochimica Acta, 51 (2005): 218–224. http://dx.doi.org/10.1016/j.electacta.2005.04.016[Crossref]
  • [180] A. Curulli, F. Valentini, S. Orlanducci, M. L. Terranova, C. Paoletti, G. Palleschi, Electrosynthesis of non conventional-polymer nanotubules: A new nanostructured material for analytical applications. Sensors & Actuators B, Chemical; 100 (2004) 65–71. http://dx.doi.org/10.1016/j.snb.2003.12.021[Crossref]
  • [181] S.-Y. Zhu, L.-S. Fan, X.-Q. Liu, L-H. Shi, H.-J. Li, S. Han, and G.-B. Xu, Determination of concentrated hydrogen peroxide at single-walled carbon nanohorn paste electrode. Electrochemistry Communications, 10 (2008): 695–698. http://dx.doi.org/10.1016/j.elecom.2008.02.020[Crossref]
  • [182] M. B. González García, and A. Costa García, Adsorptive stripping voltammetric behavior of colloidal gold and immunogold on a carbon paste electrode. Bioelectrochemistry & Bioenergetics, 38 (1995): 389–395. http://dx.doi.org/10.1016/0302-4598(95)01813-T[Crossref]
  • [183] D. Hernández Santos, M. B. González García, and A. Costa Garcia, Metalnano-particles based electroanalysis. A Review. Electroanalysis, 14 (2002): 1225–1235. http://dx.doi.org/10.1002/1521-4109(200210)14:18<1225::AID-ELAN1225>3.0.CO;2-Z[Crossref]
  • [184] S.-Q. Liu and H.-X. Ju, Reagentless glucose biosensor based on colloidal gold modified carbon paste electrode. Biosensors & Bioelectronics, 19 (2003): 177–183. http://dx.doi.org/10.1016/S0956-5663(03)00172-6[Crossref]
  • [185] S.-Q. Liu and H.-X. Ju, Electrocatalysis via direct electrochemistry of myoglobin immobilized on colloidal gold nanoparticles. Electroanalysis, 15 (2003): 1488–1493. http://dx.doi.org/10.1002/elan.200302722[Crossref]
  • [186] T. Grygar, F. Marken, U. Schröder, and F. Scholz, Electrochemical analysis of solids. A Review. Collection of Czechoslovak Chemical Communications, 67 (2002): 163–208. http://dx.doi.org/10.1135/cccc20020163[Crossref]
  • [187] V. Vivier, A. Regis, G. Sagon, J. Y. Nedelec, L. T. Yu, and C. Cachet Vivier, Cyclic voltammetry study of bismuth oxide powder by means of a cavity microelectrode coupled with Raman microspectrometry. Electrochimica Acta, 46 (2001): 907–914. http://dx.doi.org/10.1016/S0013-4686(00)00677-0[Crossref]
  • [188] V. B. Fetisov, G. A. Kozhina, A. N. Ermakov, A. V. Fetisov, and E. G. Miroshnikova, Electrochemical dissolution of Mn3O4 in acid solutions. Journal of Solid State Electrochemistry, 11 (2007): 1205–1210. http://dx.doi.org/10.1007/s10008-007-0269-5[Crossref]
  • [189] G. Cepria, J. J. Cepria, J. Ramajo, Fast and simple electroanalytical identification of iron oxides in geological samples. Microchimica Acta, 144 (2004): 139–145. http://dx.doi.org/10.1007/s00604-003-0096-z[Crossref]
  • [190] K. E. Jaya, S. Berckman, V. Yegnaraman, and P. N. Mohandes, Electrochemical investigation of the rusting reaction of ilmenite using CVstudies. Hydrometallurgy, 65 (2002): 217–225. http://dx.doi.org/10.1016/S0304-386X(02)00088-9[Crossref]
  • [191] E. Barrado, F. Prieto, F. J. Garay, J. Medina, and M. Vega, Characterization of nickel-bearing ferrites obtained as by-products of hydrochemical wastewater purification processes. Electrochemica Acta 47 (2002) 1959–1965. http://dx.doi.org/10.1016/S0013-4686(02)00046-4[Crossref]
  • [192] E. Barrado, F. Prieto, J. Medina, and R. Pardo, Purification of cadmium waste water: Characterization and electrochemical behaviour of ferrites bearing cadmium(II). Quimica Analytica, 20 (2001): 47–53.
  • [193] J. L. Nava, M. T. Oropeza, and I. González, Oxidation of mineral species as a function of the anodic potential of zinc sulphide concentrate in sulfuric acid. Journal of Electro-analytical Chemistry Society, Section B; 151 (2004): B387–B393.
  • [194] S.-Y. Shi, Z.-H. Fang, and J.-R. Ni, Comparative study on the bioleaching of zinc sulphides. Process Biochemistry, 41 (2006): 438–446. http://dx.doi.org/10.1016/j.procbio.2005.07.008[Crossref]
  • [195] S.-Y. Shi, Z.-H. Fang, and J.-R. Ni, Electrochemistry of marmatite-containing carbon paste electrode in the presence of bacterial strains. Bioelectrochemistry, 68 (2006): 113–118. http://dx.doi.org/10.1016/j.bioelechem.2005.05.006[Crossref]
  • [196] J. L. Nava, M. T. Oropeza, and I. González, Electrochemical characterisation of sulfur species formed during anodic dissolution of galena concentrate in perchlorate medium. Electrochimica Acta, 47 (2002): 1513–1525. http://dx.doi.org/10.1016/S0013-4686(01)00881-7[Crossref]
  • [197] J. L. Nava and I. González, The role of the carbon paste electrodes in the electro-chemical study of metallic minerals. Quimica Nova, 28 (2005): 901–909. [Crossref]
  • [198] D. Nava and I. González, Electrochemical characterization of chemical species formed during the electrochemical treatment of chalcopyrite in sulfuric acid. Electrochimica Acta, 51 (2005): 5295–5303. http://dx.doi.org/10.1016/j.electacta.2006.02.005[Crossref]
  • [199] E. A. Holley, A. J. McQuillan, D. Craw, J. P. Kim, and S. G. Sander, Mercury mobilization by oxidative dissolution of alpha cinnabar and beta-cinnabar. Chemical Geology, 240 (2007): 313–325. http://dx.doi.org/10.1016/j.chemgeo.2007.03.001[Crossref]
  • [200] C. M. V. B. Almeida and B. F. Giannetti, Electrochemical study of arsenopyrite weathering. Physical Chemistry / Chemical Physics, 5 (2003): 604–610. http://dx.doi.org/10.1039/b210631k[Crossref]
  • [201] G. Cepria, N. Alexa, E. Cordos, and J. R. Castillo, Electrochemical screening procedure for arsenic contaminated soils. Talanta, 66 (2005): 875–881. http://dx.doi.org/10.1016/j.talanta.2004.12.054[Crossref]
  • [202] I. Galfi, J. Aromaa, and O. Forsen, Laboratory tool for electrochemical study of sulphide minerals. Physicochemical Problems in Mineral Processing, 41 (2007): 301–312.
  • [203] C. M. V. B. Almeida and B. F. Giannetti, A new and practical carbon paste electrode for insoluble and ground samples. Electrochemistry Communications, 4 (2002): 985–988. http://dx.doi.org/10.1016/S1388-2481(02)00511-8[Crossref]
  • [204] G. Cepria, L. Irigoyen, and J. R. Castillo, A microscale procedure to test the metal sorption properties of biomass sorbents: A time and reagents saving alternative to conventional methods. Microchimica Acta, 154 (2006): 287–295. http://dx.doi.org/10.1007/s00604-006-0576-z[Crossref]
  • [205] D. R. do Carmo, R. M. da Silva, and Stradiotto N. R., Electrochemical study of Fe[Fe(CN)5NO] in a graphite paste electrode. Ecletica Quimica (Brazil), 27 (2002): 197–210. [Crossref]
  • [206] M. Shamsipur, A. Salimi, S. M. Golabi, H. Sharghi, and M. F. Mousayi, Electro-chemical properties of modified carbon paste electrodes containing some amino derivatives of 9,10-anthraquinone. Journal of Solid State Electrochemistry, 5 (2001): 68–72. http://dx.doi.org/10.1007/s100089900097[Crossref]
  • [207] A. Vlasa, S. Varvara, and L. M. Muresan, Electrochemical investigation of the influence of two thiadiazole deriva-tives on the patina of an archaeological bronze artefact using a carbon paste electrode. Studies of University Babes-Bolyai, Series Chemical (Cluj-Napoca); 52 (2007): 63–71.
  • [208] G.-Y. Shi, K. Yamamoto, T.-.S. Zhou, F. Xu, T. Kato, J.-Y. Jin, and L.-T. Jin, On-line biosensors for simultaneous determination of glucose, choline, and glutamate integrated with a microseparation system. Electrophoresis, 24 (2003): 3266–3272. http://dx.doi.org/10.1002/elps.200305533[Crossref]
  • [209] S.-Y. Ly, Real-time voltammetric assay of cadmium ions in plant tissue and fish brain core. Bulletin of the Korean Chemistry Society, 27 (2006): 1613–1617.
  • [210] S. Y. Ly, Diagnosis of Cu(II) ions in vascular tracts by a F-doped carbon nanotube sensor. Talanta, 74 (2008): 1635–1641. http://dx.doi.org/10.1016/j.talanta.2007.10.017[Crossref]
  • [211] S.-Y. Ly, Y.-S. Jung, C.-H. Lee, and B.-W. Lee, Administering pesticide assays with the aid of invivo implanted biosensors. Australian Journal of Chemistry, 61 (2008): 826–832. http://dx.doi.org/10.1071/CH08028[Crossref]
  • [212] L. Lvova, S.-S. Kim, A. Legin, Y. Vlasov, J.-S. Yang, G.-S. Cha, and H. Nam, Solid-state electronic tongue and its application for beverage analysis. Analytica Chimica Acta, 468 (2002): 303–314. http://dx.doi.org/10.1016/S0003-2670(02)00690-6[Crossref]
  • [213] A. Arrieta, M. L. Rodríguez Mendéz, and J. A. de Saja, Langmuir-Blodgett film and carbon paste electrode based on phthalocyanines as sensing units for taste. Sensors & Actuators B, Chemical; 95 (2003): 357–365. http://dx.doi.org/10.1016/S0925-4005(03)00438-6[Crossref]
  • [214] V. Parra, A. A. Arrieta, J. A. Fernández Escudero, M. Iníguez, J. A. de Saja, and M. M. L. Rodríguez, Monitoring of the ageing of red wines in oak barrels by an hybrid electronic tongue. Analytica Chimica Acta, 563 (2006): 229–237. http://dx.doi.org/10.1016/j.aca.2005.09.044[Crossref]
  • [215] M. L. Rodríguez Mendez, V. Parra, C. Apetrei, S. Villanuevam, M. Gay, N. Prieto, J. Martínez, and J. A. de Saja, Electronic tongue based on voltammetric electrodes modified with materials showing complementary electroactive properties. Characterization and Applications. Microchimica Acta, 163 (2008): 23–31. http://dx.doi.org/10.1007/s00604-007-0907-8[Crossref]
  • [216] C. Apetrei, F. Gutieréz, M. L. Rodríguez Mendéz, and J. A. de Saja, Novel method based on carbon paste electrodes for the evaluation of bitterness in extra virgin olive oils. Sensors & Actuators B, Chemical, 121 (2007): 567–575. http://dx.doi.org/10.1016/j.snb.2006.04.091[Crossref]
  • [217] Y. Kureishi, H. Shiraishi, and H. Tamiaki, Self-aggregates of synthetic zinc chlorins as the photo-sensitizer on carbon paste electrodes for a novel solar cell. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 496 (2001): 13–20. http://dx.doi.org/10.1016/S0022-0728(00)00262-X[Crossref]
  • [218] M. Torimura, A. Miki, A. Wadano, K. Kano, and T. Ikeda, Electrochemical investigation of photoreduction catalyzed by cyanobacteria Synechococcus sp. PCC-7942) in exogenous quinones and photoelectrochemical oxidation of water. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 496 (2001): 21–28. http://dx.doi.org/10.1016/S0022-0728(00)00253-9[Crossref]
  • [219] T.-S. Oh, J.-H. Lee, S.-E. Lee, K.-W. Min, S.-K. Kang, J.-B. Yoo, C.-Y. Park, and J.-M. Kim, A field-emission display with an asymmetric electrostatic-quadrupole lens structure. Japanese Journal of Applied Physics, 44 (2005): 8692–8697. http://dx.doi.org/10.1143/JJAP.44.8692[Crossref]
  • [220] S. Křížková, P. Ryant, O. Kryštofová, V. Adam, V. Galiová, M. Beklová, P. Babula, J. Kaiser, K. Novotný, J. Novotný, M. Liška, R. Malina, J. Zehnálek, J. Hubálek, L. Havel, R. Kizek, Multi-instrumental analysis of tissues of sunflower plants treated with silver(I) ions: Plants as bioindicators of environmental pollution. Sensors, 8 (2008): 445–463. http://dx.doi.org/10.3390/s8010445[Crossref]
  • [221] A. Economou and P. R. Fielden, Mercury film electrodes: developments, trends and potentialities for electroanalysis (Review). Analyst (UK), 128 (2003): 205–212.
  • [222] A. Walcarius, Zeolite-modified electrodes in electroanalytical chemistry. Analytica Chimica Acta, 384 (1999): 1–16. http://dx.doi.org/10.1016/S0003-2670(98)00849-6[Crossref]
  • [223] A. Walcarius, Electroanalysis with pure, chemically modified, and sol-gel-derived silica-based materials. Electroanalysis, 13 (2001): 701–718. http://dx.doi.org/10.1002/1521-4109(200105)13:8/9<701::AID-ELAN701>3.0.CO;2-6[Crossref]
  • [224] A. Walcarius, Electrochemical applications of silica-based organic-inorganic hybrid materials. Chem. Mater., 13 (2001): 3351–3372. http://dx.doi.org/10.1021/cm0110167[Crossref]
  • [225] A. Walcarius, Electroanalytical applications of microporous zeolites and mesoporous (organo) silicas: Recent trends. Electroanalysis, 20 (2008): 711–738. http://dx.doi.org/10.1002/elan.200704144[Crossref]
  • [226] A. Walcarius, P. Mariaulle, and L. Lamberts, Zeolite-modified solid carbon paste electrodes. Journal of Solid State Electrochemistry, 7 (2003): 671–677. http://dx.doi.org/10.1007/s10008-003-0369-9[Crossref]
  • [227] A. Walcarius, Zeolite-modified paraffin-impregnated graphite electrode. Journal of Solid State Electrochemistry, (2006): 469–478. [Crossref]
  • [228] S. Sayen, M. Etienne, J. Bessière, and A. Walcarius, Tuning the sensitivity of electrodes modified with an organic-inorganic hybrid by tailoring the structure of the nano-composite material. Electroanalysis, 14 (2002): 1521–1525. http://dx.doi.org/10.1002/1521-4109(200211)14:21<1521::AID-ELAN1521>3.0.CO;2-7[Crossref]
  • [229] A. Walcarius, M. Etienne, S. Sayen, and B. Lebeau, Grafted silicas in electroanalysis: A Study on amorphous versus ordered mesoporous materials. Electroanalysis, 15 (2003): 414–421. http://dx.doi.org/10.1002/elan.200390048[Crossref]
  • [230] M. Etienne, J. Bessière, and A. Walcarius, Voltammetric detection of copper(II) at a carbon paste electrode containing an organically modified silica. Sensors & Actuators B, Chemical; 76 (2001): 531–538. http://dx.doi.org/10.1016/S0925-4005(01)00614-1[Crossref]
  • [231] S. Sayen, C. Gérardin, L. Rodehuser, and A. Walcarius, Electrochemical detection of copper(II) at an electrode modified by a carnosine-silica hybrid material. Electro-analysis, 15 (2003): 422–430.
  • [232] V. Ganesan and A. Walcarius, Surfactant templated sulfonic acid-functionalized silica microspheres as new efficient ion-exchangers and electrode modifiers. Langmuir, 20 (2004): 3632–3640. http://dx.doi.org/10.1021/la0364082[Crossref]
  • [233] S. Goubert-Renaudin, M. Etienne, Y. Rousselin, F. Denat, B. Lebeau, and A. Walcarius, Cyclamfunctionalized silica-modified electrodes for selective determination of Cu(II). Electroanalysis, in press.
  • [234] M. Etienne, C. Delacôte, and A. Walcarius, Interest of mesoporous organic-inorganic hybrids in electroanalysis: Illustration for mercury binding to thiol-functionalized silica-based materials; in Progress in Electrochemistry Research, ed. M. Nuñéz. (Hauppauge (NY): Nova Science Publishers, 2005), pp.145–184.
  • [235] W. Yantasee, C. Timchalk, G. E. Fryxell, B. P. Dockendorff, and Y. Lin, Automated portable analyzer for lead(II) based on sequential flow injection and nano-structured electrochemical sensors. Talanta, 68 (2005): 256–261. http://dx.doi.org/10.1016/j.talanta.2005.07.013[Crossref]
  • [236] L.-D. Li, W.-J. Li, C.-Q Sun, and L.-S. Li, Fabrication of carbon paste electrode containing 1:12 phosphomolybdic anions encapsulated in modified mesoporous molecular sieve MCM-41 and its electrochemistry. Electroanalysis, 14 (2002): 368–375. http://dx.doi.org/10.1002/1521-4109(200203)14:5<368::AID-ELAN368>3.0.CO;2-I[Crossref]
  • [237] C. Delacôte, J.-P. Bouillon, and A. Walcarius, Voltammetric responses of ferrocene-grafted mesoporous silica. Electrochimica Acta, 51 (2006): 6373–6383. http://dx.doi.org/10.1016/j.electacta.2006.04.042[Crossref]
  • [238] M. Zendehdel, A. Babaei, and S. Alami, Intercalation of xylenol orange, morin, and calmagite into NaY-zeolite and their application in a dye / zeolite modified electrode. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 59 (2007): 345–349. http://dx.doi.org/10.1007/s10847-007-9334-z[Crossref]
  • [239] D. Gligor, L. M. Muresan, A. Dumitrum, and I. C. Popescu, Electrochemical behavior of carbon paste electrodes modified with methylene green immobilized on two different X-type zeolites. Journal of Applied Electrochemistry, 37 (2007): 261–267. http://dx.doi.org/10.1007/s10800-006-9251-7[Crossref]
  • [240] J. Li, M.-H. Huang, X.-Q. Liu, H. Wei, Y.-H. Xu, G.-B. Xu, and E.-K. Wang, Enhanced electrochemiluminescence sensor from tris(2,2′-bipy)RuII incorporated into MCM-41 and ionic liquid-based carbon paste electrode. Analyst (UK), 132 (2007): 687–691. http://dx.doi.org/10.1039/b701842h
  • [241] I. Švancara, K. Kalcher, and K. Vytřas, Solid Electrodes Plated with Metallic Films. Scientific Papers of the University of Pardubice, Series A; 3 (1997): 207–225.
  • [242] I. Švancara, R. Pazdera, R. Metelka, E. Norkus, and K. Vytřas, Some aspects of using stripping potentiometry for measurements with carbon paste electrodes plated with mercury- and gold films; in Monitoring of Environmental Pollutants - III (in Czech), eds. K. Vytřas, J. Kellner, and J. Fischer (University of Pardubice, 2001), pp. 123–134.
  • [243] I. Švancara, M. Fairouz, Kh. Ismail, R. Metelka, and K. Vytřas, A contribution to the characterisation of mercury- and bismuth film carbon paste electrodes in stripping voltammetry. Scientific Papers of the University of Pardubice, Series A; 9 (2003): 31–48.
  • [244] I. Švancara, M. Fairouz, Kh. Ismail, J. Šrámková, R. Metelka, and K. Vytřas: Applicability of electrochemical stripping analysis at mercury- and bismuth-film carbon paste electrodes to crude oil digests. Scientific Papers of the University of Pardubice, Series A; 10 (2004): 5–20.
  • [245] E. Tesařová, A. Królicka, A. Bobrowski, I. Švancara, and K. Vytřas, A study on simultaneous determination of indium and cadmium at mercury-based and bismuth filmplated electrodes, Scientific Papers of the University of Pardubice, Series A; 10 (2004): 21–32.
  • [246] I. Švancara, E. Tesařová, and R. Metelka, Stripping voltammetry at mercury-film plated carbon paste electrodes: Ten years of advanced laboratory exercises for students at the University of Pardubice. Scientific Papers of the University of Pardubice, Series A; 11 (2005): 343–361.
  • [247] I. Švancara, K. Vytřas, A. Bobrowski, and K. Kalcher, Determination of arsenic at a goldplated carbon paste electrode using constant current stripping analysis. Talanta, 56 (2002): 45–55. http://dx.doi.org/10.1016/S0039-9140(02)00255-2[Crossref]
  • [248] A. Królicka, R. Pauliukaitė, I. Švancara, R. Metelka, E. Norkus, A. Bobrowski, K. Kalcher, and K. Vytřas, Bismuth film-plated carbon paste electrodes, Electrochemistry Communications, 4 (2002): 193–196. http://dx.doi.org/10.1016/S1388-2481(01)00301-0[Crossref]
  • [249] K. Vytřas, I. Švancara, and R. Metelka, A novelty in potentiometric stripping analysis: Total replacement of mercury by bismuth. Electroanalysis, 14 (2002): 1359–1364. http://dx.doi.org/10.1002/1521-4109(200211)14:19/20<1359::AID-ELAN1359>3.0.CO;2-P[Crossref]
  • [250] S. A. A. Elsuccary, I. Švancara, R. Metelka, L. Baldrianová, M. E. M. Hassouna, and K. Vytřas, Applicability of bismuth film carbon paste electrodes in highly alkaline media. Scientific Papers of the University of Pardubice, Series A; 9 (2003): 5–17.
  • [251] I. Švancara, L. Baldrianová, E. Tesařová, S. A. A. Elsuccary, A. Economou, S. Sotiropoulos, A. Bobrowski, and K. Vytřas, Stripping voltammetry of metal-ion mixtures at bismuth film-plated electrodes; in Monitoring of Environmental Pollutants - VI (in Czech), eds. K. Vytřas, J. Kellner, and J. Fischer (University of Pardubice, 2004), pp. 229–246.
  • [252] I. Švancara, L. Baldrianová, M. Vlček, R. Metelka, and K. Vytřas, A role of the plating regime in the deposition of bismuth films onto a carbon paste electrode: Microscopic study. Electroanalysis, 17 (2005): 120–126. http://dx.doi.org/10.1002/elan.200403061[Crossref]
  • [253] E. Tesařová, L. Baldrianová, A. Królicka, I. Švancara, A. Bobrowski, and K. Vytřas, Role of supporting electrolyte in anodic stripping voltammetry of In(III) in the presence of Cd(II) and Pb(II) using bismuth film electrodes; in Sensing in Electroanalysis, eds. K. Vytřas and K. Kalcher. (Pardubice: University of Pardubice, 2005), pp. 75–87.
  • [254] K. Vytřas, L. Baldrianová, E. Tesařová, A. Bobrowski, and I. Švancara, Comments to Stripping voltammetric determination of copper(II) at bismuth-modified carbon substrate electrodes; in Sensing in Electroanalysis, eds. K. Vytřas, K. Kalcher. (Pardubice: University of Pardubice, 2005), pp. 49–58.
  • [255] I. Švancara, L. Baldrianová, E. Tesařová, T. Mikysek, and K. Vytřas, Determination of tin(II) at bismuth-modified carbon paste electrodes: An initial study; in: Monitoring of Environmental Pollutants - VII (in Czech), eds.: K. Vytřas, J. Kellner, and J. Fischer. (Pardubice: University of Pardubice, 2005), pp. 139–148.
  • [256] I. Švancara, L. Baldrianová, E. Tesařová, S. B. Hočevar, S. A. A. Elsuccary, A. Economou, S. Sotiropoulos, B. Ogorevc, and K. Vytřas, Recent advances in anodic stripping voltammetry with Bi-modified carbon paste electrodes. Electroanalysis, 18 (2006): 177–185. http://dx.doi.org/10.1002/elan.200503391[Crossref]
  • [257] L. Baldrianová, I. Švancara, M. Vlček, A. Economou, and S. Sotiropoulos, Effect of Bi(III) concentration on the stripping voltammetric response of in-situ bismuth-coated carbon paste and gold electrodes. Electrochimica Acta, 52 (2006): 481–490. http://dx.doi.org/10.1016/j.electacta.2006.05.029[Crossref]
  • [258] I. Švancara, L. Baldrianová, E. Tesařová, T. Mikysek, and K. Vytřas, Anodic stripping voltammetry at bismuth-modified electrodes in ammonia-buffered media. Scientific Papers of University of Pardubice, Series A; 12 (2006): 5–19.
  • [259] L.-Y. Cao, J.-B. Jia, and Z.-H. Wang, Sensitive determination of Cd(II) and Pb(II) by differential pulse stripping voltammetry with in-situ bismuth-coated zeolite doped carbon paste electrodes. Electrochimica Acta, 53 (2007): 2177–2182. http://dx.doi.org/10.1016/j.electacta.2007.09.024[Crossref]
  • [260] I. Adraoui, M. E. Rhazi, and A. Amine, Fibrinogen-coated bismuth film electrodes for voltammetric analysis of lead and cadmium using the batch injection analysis, Analytical Letters, 40 (2007): 349–367. http://dx.doi.org/10.1080/00032710600964676[Crossref]
  • [261] I. Švancara, L. Baldrianová, E. Tesařová, M. Vlček, K. Vytřas, and S. Sotiropoulos, Microscopic studies with bismuth-modified carbon paste electrode substrates: Morphological transformations of bismuth microstructures and related observations; in Sensing in Electroanalysis - 2, eds. K. Vytřas and K. Kalcher. (University of Pardubice, 2007), pp. 35–58.
  • [262] L. Baldrianová, I. Švancara, K. Vytřas, and S. Sotiropoulos, Variation of the metal analyte-to-bismuth peak ratio with deposition time in anodic stripping voltammetry at in-situ bismuthcoated carbon paste electrodes, in Sensing in Electroanalysis - 2, eds. K. Vytřas and K. Kalcher. (Pardubice: University of Pardubice, 2007), pp. 59–74.
  • [263] R. Pauliukaitė, R. Metelka, I. Švancara, A. Królicka, A. Bobrowski, K. Vytřas, E. Norkus, and K. Kalcher, Carbon paste electrodes modified with Bi2O3 as sensors for the determination of cadmium and lead. Analytical and Bioanalytical Chemistry, 374 (2002): 1155–1158. http://dx.doi.org/10.1007/s00216-002-1569-3[Crossref]
  • [264] S. B. Hočevar, I. Švancara, B. Ogorevc, and K. Vytřas, Novel electrode for electro-chemical stripping analysis based on carbon paste modified with bismuth powder. Electro-chimica Acta, 51 (2005): 706–710. http://dx.doi.org/10.1016/j.electacta.2005.05.023[Crossref]
  • [265] L. Baldrianová, P. Agrafiotou, I. Švancara, K. Vytřas, and S. Sotiropoulos, The determination of cysteine at bismuth-powder carbon paste electrodes by cathodic stripping voltammetry. Electrochemistry Communications, 10 (2008): 918–921. http://dx.doi.org/10.1016/j.elecom.2008.04.017[Crossref]
  • [266] K. Vytřas, I. Švancara, and R. Metelka, Bismuthbased electrodes in electrochemical stripping analysis: A review; in Monitoring of Environmental Pollutants - IV (in Czech), eds. K. Vytřas, J. Kellner, and J. Fischer. (University of Pardubice, 2002). pp. 159–170.
  • [267] A. Economou, Bismuth-film electrodes: recent developments and potentialities for electroanalysis (A review). Trends in Analytical Chemistry, 24 (2005): 334–340. http://dx.doi.org/10.1016/j.trac.2004.11.006[Crossref]
  • [268] J. Wang, Stripping analysis at bismuth electrodes: A Review. Electroanalysis, 17 (2005): 1341–1346. http://dx.doi.org/10.1002/elan.200403270[Crossref]
  • [269] I. Švancara and K. Vytřas, Electroanalysis with bismuth electrodes: State of the art and future prospects (in Czech). Chemické Listy, 100 (2006): 90–113.
  • [270] C. Kokkinos and A Economou, Stripping analysis at bismuth-based electrodes. Current Analytical Chemistry, 4 (2008): 183–190. http://dx.doi.org/10.2174/157341108784911352[Crossref]
  • [271] C. Gouveia Caridade, R. Pauliukaitė, and C. M. A. Brett, Influence of Nafion coatings and surfactant on the stripping voltammetry of heavy metals at bismuth-modified carbon film electrodes. Electroanalysis, 18 (2006): 854–861. http://dx.doi.org/10.1002/elan.200603482[Crossref]
  • [272] R. Kalvoda, Is polarography still attractive? (A Review). Chemia Analyticzna (Warsaw), 52 (2007): 869–873.
  • [273] I. Švancara, S. B. Hočevar, L. Baldrianová, E. Tesařová, and K. Vytřas, Antimony-modified carbon paste electrodes: Initial studies and prospects. Scientific Papers of the University of Pardubice, Series A; 13 (2007): 5–19.
  • [274] R. Pauliukaitė and K. Kalcher, On using of CPE and SPCE modified by Bi2O3 and Sb2O3 for trace analysis of some heavy metals; in YISAC’ 01: 8th Young Investigators’ Seminar on Analytical Chemistry, Book of Abstracts (University of Pardubice, 2001), pp. 10–11.
  • [275] A. Bobrowski, A. Królicka, and E. Łyczkowska, Carbon paste electrode plated with lead film: Electrochemical characteristics and application in adsorptive stripping voltammetry. Electroanalysis, 20 (2008): 61–67. http://dx.doi.org/10.1002/elan.200704089[Crossref]
  • [276] A. Economou and A. Voulgaropoulos, A study of the square-wave modulation for the determination of trace metals by anodic and adsorptive stripping voltammetry with bismuth film electrodes. Scientific Papers of the University of Pardubice, Series A; 10 (2004): 33–46.
  • [277] R. Pauliukaite and K. Kalcher, Determination of Traces of Cd(II) and Pb(II) Using a Bi-Modified Carbon Paste and Screen-Printed Carbon Electrodes; in US-CZ Workshop on Electrochemical Sensors - Prague’ 01, Book of Abstracts; eds. J. Barek and J. Drašar J. (Prague: Czech Chemical Society, 2001), pp. 30–31.
  • [278] R. Pauliukaitė, R. Metelka, I. Švancara, A. Królicka, A. Bobrowski, E. Norkus, K. Kalcher, K. Vytřas, Screen-printed carbon electrodes bulk-modified with Bi2O3 or Sb2O3 for trace determination of heavy metals. Scientific Papers of the University of Pardubice, Series A; 10 (2004): 47–58.
  • [279] R. Metelka, M. Stočes, J. Krejčí, M. Bartoš, I. Švancara, P. Kotzian, and K. Vytřas, Development and characterization of new types of screen-printed bismuth-based sensors; in: Sensing in Electroanalysis - 2, eds. K. Vytřas and K. Kalcher. (Pardubice: University of Pardubice, 2007), pp. 169–179.
  • [280] K. Kalcher, I. Švancara, M. Buzuk, K. Vytřas, and A. Walcarius, Electrochemical sensors and biosensors based on heterogeneous carbon materials. Monatshefte fur Chemie - Chemical Monthly, 140 (2009): 861–889. http://dx.doi.org/10.1007/s00706-009-0131-9[Crossref]
  • [281] J. Růžička, C. G. Lamm, and J. C. Tjell, Selectrode™ - the universal ion-selective electrode: Concept, construction and materials. Analytica Chimica Acta, 62 (1972): 15–28. http://dx.doi.org/10.1016/S0003-2670(01)80978-8[Crossref]
  • [282] K. Vytřas and I. Švancara, Carbon pastebased ion-selective electrodes, in Sensing in Electroanalysis - 2, eds. K. Vytřas and K. Kalcher. (University of Pardubice, 2007), pp. 7–22.
  • [283] R. P. Buck, Electrochemical Methods: Ion-Selective Electrodes, in Water Analysis, Vol. II, eds. R. A. Minear and L. H. Keith. (Orlando: Academic Press, 1984), pp. 249–321.
  • [284] K. Vytřas, J. Kalous, V. Dlabka, and J. Ježková, Studies on potentiometric titrations using simple liquid membrane-based electrodes: Coated-wires versus carbon pastes. Scientific Papers of the University of Pardubice, Series A; 3 (1997): 307–321.
  • [285] K. Vytřas, J. Kalous, and J. Ježková: Automated potentiometry as an ecologic alternative to two-phase titrations of surfactants. Egyptian Journal of Analytical Chemistry, 6 (1997): 107–123.
  • [286] L. Tymecki, M. Jakubowska, S. Achmatowicz, R. Koncki, and S. Glab, Potentiometric thick-film graphite electrodes with improved response to copper ions. Analytical Letters, 34 (2001): 71–78. http://dx.doi.org/10.1081/AL-100002705[Crossref]
  • [287] A. Abbaspour and S. S. M. Moosavi, Chemically modified carbon paste electrode for determination of copper(II) by potentiometric method. Talanta, 56 (2002): 91–96. http://dx.doi.org/10.1016/S0039-9140(01)00549-5[Crossref]
  • [288] M. Javanbakht, A. Badiei, M. R. Ganjali, P. Norouzi, A. Hasheminasab, and M. Abdouss, Use of organo-functionalized nanoporous silica gel to improve the lifetime of carbon paste electrode for determination of Cu(II). Analytica Chimica Acta, 601 (2007): 172–182. http://dx.doi.org/10.1016/j.aca.2007.08.038[Crossref]
  • [289] H. M. Abu-Shawish and S. M. Saadeh, A new chemically modified carbon paste electrode for determination of copper based on N,N′-disalicylidenehexametylene-diaminate copper(II) complex. Sensor Letters, 5 (2007): 565–571. http://dx.doi.org/10.1166/sl.2007.233[Crossref]
  • [290] M. J. Gismera, M. T. Sevilla, and J. R. Procopio, Flow and batch systems for copper(II) potentiometric sensing. Talanta, 14 (2008): 190–197.
  • [291] R. Chaisuksant, L. Pattanarat, and K. Grudpan, Naphthazarin modified carbon paste electrode for determination of copper(II). Microchimica Acta, 162 (2008): 181–188. http://dx.doi.org/10.1007/s00604-007-0879-8[Crossref]
  • [292] M. H. Mashhadizadeh, K. Eskandari, A. Foroumadi, and A. Shafiee, Copper(II) modified carbon paste electrodes based on self-assembled mercapto compounds-gold-nanoparticle. Talanta, 76 (2008): 497–502. http://dx.doi.org/10.1016/j.talanta.2008.02.019[Crossref]
  • [293] M. Javanbakht, M. R. Ganjali, P. Norouzi, A. Badiei, A. Hasheminasab, and M. Abdouss, Carbon paste electrode modified with functionalized nanoporous silica gel as a new sensor for determination of silver ion. Electroanalysis, 19 (2007): 1307–1314. http://dx.doi.org/10.1002/elan.200603854[Crossref]
  • [294] M. N. Abbas and G. A. E. Mostafa, New triiodomercurate-modified carbon paste electrode for the potentiometric determination of mercury(II). Analytica Chimica Acta, 478 (2003): 329–335. http://dx.doi.org/10.1016/S0003-2670(02)01520-9[Crossref]
  • [295] M. H. Mashhadizadeh, M. P. Talakesh, Mahnaz, and H. M. M. Hamidian, A novel modified carbon paste electrode for potentiometric determination of mercury(II) ion. Electroanalysis, 18 (2006): 2174–2179. http://dx.doi.org/10.1002/elan.200603643[Crossref]
  • [296] M. J. Gismera, J. R. Procopio, and M. T. Sevilla, Characterization of mercury-humic acids interaction by potentiometric titration with a modified carbon paste mercury sensor. Electroanalysis, 19 (2007): 1055–1061. http://dx.doi.org/10.1002/elan.200603821[Crossref]
  • [297] M. J. Gismera, M. T. Sevilla, and J. R. Procopio, Potentiometric carbon paste sensors for lead(II) based on dithiodibenzoic and mercaptobenzoic acids. Analytical Sciences (Japan), 22 (2006): 405–410. http://dx.doi.org/10.2116/analsci.22.405[Crossref]
  • [298] M. M. Ardakani, M. A. Karimi, M. H. Mashhadizadeh, M. Pesteh, M. S. Azimi, and H. Kazemian, Potentiometric determination of monohydrogen arsenate by zeolite-modified carbon-paste electrode. International Journal of Environmental Analytical Chemistry, 87 (2007): 285–294. http://dx.doi.org/10.1080/03067310601068825[Crossref]
  • [299] G. A. E. Mostafa, Development and characterization of ion selective electrode for the assay of antimony. Talanta, 71 (2007): 1449–1454. http://dx.doi.org/10.1016/j.talanta.2006.05.095[Crossref]
  • [300] G. A. E. Mostafa and A. M. Homoda, Potentiometric carbon paste electrodes for the determination of bismuth in some pharmaceutical preparations. Bulletin of the Chemical Society of Japan, 81 (2008): 257–261. http://dx.doi.org/10.1246/bcsj.81.257[Crossref]
  • [301] H. R. Pouretedal and M. H Keshavarz, Cyclam modified carbon paste electrode as a potentiometric sensor for determination of cobalt(II) ions. Gaodeng Xuexiao Huaxue Xuebao (Chemical Research in Chinese Universities), 21 (2005): 28–31.
  • [302] M. Galík, M. Cholota, I. Švancara, A. Bobrowski, and K. Vytřas, A Study on stripping voltammetric determination of osmium(IV) at a carbon paste electrode modified in situ with cationic surfactants. Electroanalysis, 18 (2006): 2218–2224. http://dx.doi.org/10.1002/elan.200603650[Crossref]
  • [303] M. F. S. Teixeira, E. T. G. Cavalheiro, M. F. Bergamini, F. C. Moraes, and N. Bocchi, Use of a carbon paste electrode modified with spinel-type manganese oxide as a potentiometric sensor for lithium ions in flow injection analysis. Electroanalysis, 16 (2004): 633–639. http://dx.doi.org/10.1002/elan.200302850[Crossref]
  • [304] C. F. B. Coutinho, A. A. Muxel, C. G. Rocha, D. A. de Jesus, R. V. S. Alfaya, F. A. S. Almeida, Y. Gushikem, and A. A. S. Alfaya, Ammonium ion sensor based on SiO2 / ZrO2 / phosphate-NH4+ composite for quantification of ammonium ions in natural waters. Journal of Brazilian Chemical Society, 18 (2007): 189–194.
  • [305] M. N. Abbas, Chemically modified carbon paste electrode for iodide on the basis of cetyltrimethylammonium iodide ion-pair. Analytical Sciences (Japan), 19 (2003): 229–233. http://dx.doi.org/10.2116/analsci.19.229[Crossref]
  • [306] J. Tan, J. H. Bergantini, A. Merkoci, S. Alegret, and F. Sevilla, Oil dispersion of AgI/Ag2S salts as a new electroactive material for potentiometric sensing of iodide and cyanide. Sensors & Actuators B, Chemical; 101 (2004): 57–62. http://dx.doi.org/10.1016/j.snb.2004.02.038[Crossref]
  • [307] A. Abbaspour, M. Asadi, A. Ghaffarinejad, and E. Safaei, A selective modified carbon paste electrode for determination of cyanide using tetra-3,4-pyridinoporphyrazinato-cobalt(II). Talanta, 93 (2005): 931–936. http://dx.doi.org/10.1016/j.talanta.2004.12.062[Crossref]
  • [308] M. Shamsipur, S. Ershad, N. Samadi, A. Moghimi, and H. Aghabozorg, A novel chemically modified carbon paste electrode based on a new mercury(II) complex for selective potentiometric determination of bromide ion. Journal of Solid State Electro-chemistry, 9 (2005): 788–793. http://dx.doi.org/10.1007/s10008-005-0692-4[Crossref]
  • [309] A. Soleymanpour, E. H. Asl, and M. A. Nasseri, Chemically modified carbon paste electrode for determination of sulfate ion, SO42-, by potentiometric method. Electroanalysis, 18 (2006): 1598–1604. http://dx.doi.org/10.1002/elan.200503562[Crossref]
  • [310] K. Vytřas, Potentiometric titrations based on ionpair formation. Ion-Selective Electrode Reviews, 7 (1985): 77–164.
  • [311] H. Ibrahim, Y. M. Issa, and H. M. Abu Shawish, Chemically modified CPE for the potentiometric determination of Dicylomine hydrochloride under batch and in FIA conditions. Analytical Sciences (Japan), 20 (2004): 911–916. http://dx.doi.org/10.2116/analsci.20.911[Crossref]
  • [312] S. I. M. Zayed, New plastic membrane and carbon paste ion selective electrodes for potentiometric determination of Triprolidine. Analytical Sciences, 20 (2004): 1043–1048. http://dx.doi.org/10.2116/analsci.20.1043[Crossref]
  • [313] H. Ibrahim, Chemically modified carbon paste electrode for the potentiometric FIA of Piribedil in pharmaceutical preparation and urine. Journal of Pharmaceutical and Biomedical Analysis, 38 (2005): 524–632. http://dx.doi.org/10.1016/j.jpba.2005.02.006[Crossref]
  • [314] Y. M. Issa, H. Ibrahim, and H. M. Abu Shawish, Carbon paste electrode for the potentiometric flow injection analysis of Drotaverine in serum and urine. Microchimica Acta, 150 (2005): 47–54. http://dx.doi.org/10.1007/s00604-005-0323-x[Crossref]
  • [315] M. N. Abbas and G. A. E. Mostafa, Gallaminetetraphenylborate-modified carbon paste electrode for potentio-metric determination of gallamine triethiodide (Flaxedil). Journal of Pharmaceitical and Biomedical Analysis, 31 (2003): 819–826. http://dx.doi.org/10.1016/S0731-7085(02)00663-5[Crossref]
  • [316] K. I. Ozomena, R. I. Stefan, J. F. van Staden, and H. Y. Aboul Enein, Enantioanalysis of S-Perindopril using different cyclodextrin-based potentiometric sensors. Sensors & Actuators B, Chermical; 105 (2005): 425–429. http://dx.doi.org/10.1016/j.snb.2004.06.032[Crossref]
  • [317] R. I. Stefan van Staden, R. G. Bokretsion, K. I. Ozomena, J. F. van Staden, and H. Y. Aboul Enein, Enantioselective, potentiometric membrane electrodes based on different cyclodextrins as chiral selectors for the assay of S-Flurbiprofen. Electroanalysis, 18 (2006): 1718–1721. http://dx.doi.org/10.1002/elan.200603574[Crossref]
  • [318] R. I. Stefan van Staden, R. G. Bokretsion, and K. I. Ozomena, Utilization of maltodextrin-based enantioselective, potentiometric membrane electrodes for the enantio-selective assay of S-Flurbiprofen. Analytical Letters, 39 (2006): 1065–1073. http://dx.doi.org/10.1080/00032710600620401[Crossref]
  • [319] V. V. Cosofret and R. P. Buck, Drug-Type Substances analysis with membrane electrodes, Ion-Selective Electrode Reviews, 6 (1984): 59–121.
  • [320] K. Vytřas, The use of ion-selective electrodes in the determination of drug substances. Journal of Pharmaceutical and Biomedical Analysis, 7 (1989): 789–812. http://dx.doi.org/10.1016/0731-7085(89)80001-9[Crossref]
  • [321] K. I. Ozomena and R. I. Stefan, Enantioselective potentiometric electrodes based on alpha-, beta-, and gamma-cyclodextrins as chiral selectors for the assay of l-proline. Talanta, 66 (2005): 501–504. http://dx.doi.org/10.1016/j.talanta.2004.11.024[Crossref]
  • [322] M. K. Amini, S. Shahrokhian, S. Tangestaninejad, and V. Mirkhani, Iron(II) phthalocyanine-modified carbon paste electrode for potentiometric detection of ascorbic acid. Analytical Biochemistry, 290 (2001): 277–282. http://dx.doi.org/10.1006/abio.2000.4929[Crossref]
  • [323] B. N. Barsoum, W. M. Watson, I. M. Mahdi, and E. Khaled, Electrometric assay for the determination of acetylcholine using a sensitive sensor based on carbon paste. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 567 (2004): 277–281. http://dx.doi.org/10.1016/j.jelechem.2003.12.039[Crossref]
  • [324] M. K. Amini, J. H. Khorasani, S. S. Khaloo, and S. Tangestaninejad, Cobalt(II) salophen-modified carbon paste electrode for potentiometric and voltammetric determination of cysteine. Analytical Biochemistry, 320 (2003): 32–38. http://dx.doi.org/10.1016/S0003-2697(03)00355-5[Crossref]
  • [325] S. S. Khaloo, M. K. Amini, S. Tangestaninejad, S. Shahrokhian, and R. Kia, Voltam-metric and potentiometric study of cysteine at Co(II)-phthalocyanine modified carbon paste electrode. Journal of Iranian Chemical Society, 1 (2004): 128–135.
  • [326] S. Shahrokhian and J. Yazdani, Electrocatalytic oxidation of thioglycolic acid (TGA) at carbon paste electrode modified with Co(II)-phthalocyanine: Applications as a potentiometric sensor. Electrochimica Acta, 48 (2003): 4143–4148. http://dx.doi.org/10.1016/S0013-4686(03)00582-6[Crossref]
  • [327] M. K. Amini, S. Shahrokhian, S. Tangestaninejad, and I. M. Baltork, Voltammetric and potentiometric behavior of 2-pyridinethiol, 2-mercaptoethanol and sulfide at iron(II) phthalocyanine modified carbon-paste electrode. Iranian Journal of Chemistry & Chemical Engineering, 20 (2001): 29–36.
  • [328] H. Ibrahim and A. Khorshid, Modified Carbon paste sensor for cetyltrimethyl-ammonium ion based on its ion-associate with tetrachloropalladate(II). Analytical Sciences (Japan), 23 (2007): 573–579. http://dx.doi.org/10.2116/analsci.23.573[Crossref]
  • [329] J. Konvalina and K. Vytřas, The present use of (chrono)potentiometric stripping analysis (In Czech). Chemické Listy, 95 (2001): 344–352.
  • [330] I. Švancara and K. Vytřas, Voltammetry with carbon paste electrodes containing membrane plasticizers used for PVC-based ion-selective electrodes. Anal Chim. Acta, 273 (1993): 195–204. http://dx.doi.org/10.1016/0003-2670(93)80158-H[Crossref]
  • [331] K. Vytřas and J. Konvalina, New possibilities of potentiometric stripping analysis based on ion-pair formation and accumulation of analyte at carbon paste electrodes (Preliminary note). Electroanalysis, 10 (1998): 787–790. http://dx.doi.org/10.1002/(SICI)1521-4109(199809)10:11<787::AID-ELAN787>3.0.CO;2-Y[Crossref]
  • [332] K. Vytřas, Ion-pairing principles in the light of construction of ion-selective electrodes and sensors for both voltammetric and potentiometric stripping analysis, in Electroanalytical Chemistry and Allied Topics, eds. S. K. Aggarwal, H. S. Sharma, N. Gopinath, and D. S. C. Purushotham. (Mumbai: SAEST, 2000), pp. 127–130.
  • [333] J. Konvalina and K. Vytřas, Determination of thallium(III) at a carbon paste electrode with the aid of potentiometric stripping analysis, in Monitororing of Environmental Pollutants (in Czech), eds. K. Vytřas, J. Kellner, J. Fischer. (Univerzita Pardubice, 1999), pp. 99–104.
  • [334] I. Švancara, B. Ogorevc, S. B. Hočevar, and K. Vytřas, Perspectives of carbon paste electrodes in stripping potentiometry. Analytical Sciences (Japan), 18 (2002): 301–305. http://dx.doi.org/10.2116/analsci.18.301[Crossref]
  • [335] J. Konvalina, E. Khaled, and K. Vytřas, Carbon paste electrode as a support for mercury film in potentiometric stripping determination of heavy metals. Collection of Czechoslovak Chemical Communications, 65 (2000): 1047–1054. http://dx.doi.org/10.1135/cccc20001047[Crossref]
  • [336] E. Khaled, J. Konvalina, K. Vytřas and H. N. A. Hassan, Investigation of carbon paste electrodes as supports for gold films in stripping potentiometry of Cu(II) and Hg(II) traces. Scientific Papers of the University of Pardubice, Series A; 9 (2003): 19–29.
  • [337] E. Tesařová and K. Vytřas, Potentiometric stripping analysis with antimony film electrodes. Electroanalysis, 21 (2009): 1075–1080. http://dx.doi.org/10.1002/elan.200804518[Crossref]
  • [338] J.-M. Zen, A. S. Kumar, and D.-M. Tsai, Recent updates of chemically modified electrodes in analytical chemistry (Review). Electroanalysis, 15 (2003): 1073–1087. http://dx.doi.org/10.1002/elan.200390130[Crossref]
  • [339] N. Y. Stozhko, N. A. Malakhova, M. V. Fyodorov, and Kh. Z. Brainina, Modified carboncontaining electrodes in stripping voltammetry of metals. Part I: Glassy carbon and carbon paste electrodes. Journal of Solid State Electrochemistry, 12 (2008): 1185–1204. http://dx.doi.org/10.1007/s10008-007-0472-4[Crossref]
  • [340] N. Y. Stozhko, N. A. Malakhova, M. V. Fyodorov, and Kh. Z. Brainina, Modified carbon-containing electrodes in stripping voltammetry of metals. Part II: Composite and microelectrodes. Journal of Solid State Electrochemistry, 12 (2008): 1219–1230. http://dx.doi.org/10.1007/s10008-007-0474-2[Crossref]
  • [341] K. Vytřas, K. Kalcher, I. Švancara, E. Khaled, J. Ježková, J. Konvalina, and R. Metelka, Recent applications of carbon paste electrodes in potentiometry and stripping analysis; in Chemical Sensors and Analytical Methods, Book of Proceedings; eds. M. Butler, P. Vanýsek, and N. Yamazoe. (Pennigton: Electrochemical Society, 2001), pp. 277–283.
  • [342] A. Bobrowski and J. Zarebski, Catalytic adsorptive stripping voltammetry at film electrodes. Current Analytical Chemistry, 4 (2008), 191–201. http://dx.doi.org/10.2174/157341108784911389[Crossref]
  • [343] C. Locatelli, Voltammetric analysis of trace levels of platinum group metals: Principles and applications (Review). Electroanalysis, 19 (2007): 2167–2175. http://dx.doi.org/10.1002/elan.200704026[Crossref]
  • [344] J. Zima, I. Švancara, J. Barek, and K. Pecková, Carbon Paste Electrodes for the Determination of Detrimental Substances in Drinking Water, in: Progress on Drinking Water Research, eds. M. H. Lefebvre and M. M. Roux. (New York: Nova Science Publ., in press; https://www.novapublishers.com/catalog/product_info.php?cPath=23_597_703&products_id=7407&osCsid=cf1cb6ee708126d565c89956e2512406; January 30, 2008.
  • [345] Kh. Z. Brainina, Electroanalysis: From laboratory to field versions (Review). Journal of Analytical Chemistry, 56 (2001): 303–312. http://dx.doi.org/10.1023/A:1016635809428[Crossref]
  • [346] N. Serrano, J. M. Díaz Cruz, C. Ariño, and M. Esteban, Stripping chronopotentiometry in environmental analysis (Review). Electroanalysis, 19 (2007): 2039–2049. http://dx.doi.org/10.1002/elan.200703956[Crossref]
  • [347] D. Lowinsohn and M. Bertotti, Electrochemical sensors: Fundamentals and applications in micro-environments. Quimica Nova, 29 (2006): 1318–1325. [Crossref]
  • [348] O. D. Renedo, M. A. Alonso Lomillo, and M. J. A. Martinez, Recent developments in the field of screen-printed electrodes and their related applications (Review). Talanta, 73 (2007): 202–219. http://dx.doi.org/10.1016/j.talanta.2007.03.050[Crossref]
  • [349] Z. Navrátilová and P. Kula, Clay modified electrodes: Present applications and prospects. Electroanalysis, 15 (2003): 837–846. http://dx.doi.org/10.1002/elan.200390103[Crossref]
  • [350] S. E. W. Jones and R. G. Compton, Fabrication and applications of nanoparticle-modified electrodes in stripping analysis. Current Analytical Chemistry, 4 (2008): 177–182. http://dx.doi.org/10.2174/157341108784911370[Crossref]
  • [351] P. Kula and Z. Navrátilová, Anion exchange of gold chloro complexes on carbon paste electrode modified with montmorillonite for determination of gold in pharmaceuticals. Electroanalysis, 13 (2001): 795–798. http://dx.doi.org/10.1002/1521-4109(200105)13:8/9<795::AID-ELAN795>3.0.CO;2-S[Crossref]
  • [352] K.-S. Ha, J.-H. Kim, Y.-S. Ha, S.-S. Lee, and M.-L. Seo, Anodic stripping voltam-metric determination of silver(I) at a carbon paste electrode modified with S2O2-donor podand. Analycal Letters, 34 (2001): 675–686. http://dx.doi.org/10.1081/AL-100103211[Crossref]
  • [353] S.-B. Zhang, X.-J. Zhang, and X.-Q. Lin, An ethylenediaminetetraacetic acid modified carbon paste electrode for the determination of silver ion. Fenxi Huaxue (Chinese Journal of Analytical Chemistry), 30 (2002): 745–747.
  • [354] M.-S. Won, J.-S. Yeom, J.-H. Yoon, E.-D. Jeong, and Y.B. Shim, Determination of Ag(I) ion at a modified carbon paste electrode containing N,N′-diphenyl oxamide. Bulletin of the Korean Chemical Socienty, 24 (2003): 948–952. http://dx.doi.org/10.5012/bkcs.2003.24.7.948[Crossref]
  • [355] C.-H. Yang, W.-S. Huang, and S.-H. Zhang, Highly sensitive electrochemical determination of trace Pb2+ and Ag+ in the presence of cetyltrimethylamonium bromide. Fenxi Huaxue (Chinese Journal of Analytical Chemistry), 31 (2003): 794–798.
  • [356] Y.-H. Li, H.-Q. Xie, and F.-Q. Zhou, Alizarin violet modified carbon paste electrode for the determination of trace silver(I) by adsorptive voltammetry. Talanta, 67 (2005): 28–33. http://dx.doi.org/10.1016/j.talanta.2005.02.009[Crossref]
  • [357] A. Mohadesi and M. A. Taher, Stripping voltammetric determination of silver(I) at carbon paste electrode modified with 3-amino-2-mercapto quinazolin-4(3H)-one. Talanta, 71 (2007): 615–619. http://dx.doi.org/10.1016/j.talanta.2006.05.001[Crossref]
  • [358] A. V. Laganovsky, Z. O. Kormosh, A. O. Fedorchuk, V. P. Sachanyuk, and O. V. Parasyuk, AgCrTiS4: Synthesis, Properties, and Analytical Application. Metallurgic Material Transactions - B, 39 (2008): 155–159. http://dx.doi.org/10.1007/s11663-007-9121-7[Crossref]
  • [359] W. Huang, C. Yang, and S. Zhang, Anodic stripping voltammetric determination of mercury by use of a sodium montmorillonite-modified carbon-paste electrode. Analytical and Bioanalytical Chemistry, 274 (2002): 998–1001. http://dx.doi.org/10.1007/s00216-002-1438-0[Crossref]
  • [360] Y.-T. Kong, G.-H. Choi, M.-S. Won, and Y.-B. Shim, Determination of Hg2(2+) ions using the specific reaction with a picolinic acid N-oxide modified electrode. Chemical Letters, 31 (2002): 54–55. http://dx.doi.org/10.1246/cl.2002.54
  • [361] A. Walcarius, M. Etienne, and C. Delacôte, Uptake of inorganic HgII by organically modified silicates: Influence of pH and chloride concentration on the binding pathways and electrochemical monitoring of the processes. Analytica Chimica Acta, 508 (2004): 87–98. http://dx.doi.org/10.1016/j.aca.2003.11.055[Crossref]
  • [362] M. Colilla, M. A. Mendiola, J. R. Procopio, and M. T. Sevilla, Application of a carbon paste electrode modified with a Schiff base ligand to mercury speciation in water. Electroanalysis, 17 (2005): 933–940. http://dx.doi.org/10.1002/elan.200403198[Crossref]
  • [363] N. L. Dias and D. R. Do Carmo, Stripping voltammetry of mercury(II) with a chemically modified carbon paste electrode containing silica gel functionalized with 2,5-dimercapto-1,3,4-thiadiazol. Electroanalysis, 17 (2005): 1540–1546. http://dx.doi.org/10.1002/elan.200403252
  • [364] I. K. Tonle, E. Ngameni, and A. Walcarius, Preconcentration and voltammetric analysis of Hg(II) at carbon paste electrode modified with natural smectite-type clays grafted with organic chelating groups. Sensors & Actuators B, Chemical; 110 (2005): 195–203. http://dx.doi.org/10.1016/j.snb.2005.01.027[Crossref]
  • [365] N. L. D. Filho, D. R. do Carmo, F. Gessner, and A. H. Rosa, Preparation of a clay-modified carbon paste electrode based on 2-thiazoline-2-thiolhexadecylammonium sorption for the sensitive determination of Hg(II) ion. Analytical Sciences, 21 (2005): 1309–1316. http://dx.doi.org/10.2116/analsci.21.1309[Crossref]
  • [366] F. Dias, L. Newton, L. D. R. do Carmo, and A. H. Rosa, An electroanalytical application of 2-aminothiazole-modified silica gel after adsorption and separation of Hg(II) from heavy metals in aqueous solution. Electrochimica Acta, 52 (2006): 965–972. http://dx.doi.org/10.1016/j.electacta.2006.06.033[Crossref]
  • [367] N. L. Dias, L. Caetano, D. R. do Carmo, and A. H. Rosa, Preparation of a silica gel modified with 2-amino-1,3,4-thiadiazole for adsorption of metal ions and electroanalytical application. Journal of Brazilian Chemical Society, 17 (2006): 473–481.
  • [368] N. L. Dias, D. R. do Carmo, and A. H. Rosa, Selective sorption of mercury(II) from aqueous solution with an organically modified clay and its electroanalytical application. Separation Sciences Technology, 41 (2006): 733–746 http://dx.doi.org/10.1080/01496390500526896[Crossref]
  • [369] L. H. Marcolino, B. C. Janegitz, B. C. Lourencao, and O. Fatibello, Anodic stripping voltammetric determination of mercury in water using a chitosan-modified sarbon paste electrode. Analytical Letters, 40 (2007): 3119–3128. http://dx.doi.org/10.1080/00032710701645463[Crossref]
  • [370] H. Zejli, J. de Cisneros, I. N. Rodríguez, H. Elbouhouti, M. Choukairi, D. Bouchta, and K. R. Temsamani, Electrochemical analysis of mercury using a cryptofix carbon-paste electrode. Analytical Letters, 40 (2007): 2788–2798. http://dx.doi.org/10.1080/00032710701577906[Crossref]
  • [371] M. C. Rizea, A. F. Danet, and S. Kalinowski, Determination of mercury(II) after its preconcentration on a carbon paste electrode modified with Cadion A. Revista de Chimie (Bucharest), 58 (2007): 266–269.
  • [372] E. Sar, H. Berber, B. Asct, and H. Cankitrtaran, Determination of some heavy metal ions with a carbon paste electrode modified by poly(glycidylmethacrylate-methyl-ethacrylatedivinylbenzene) microspheres functionalized by 2-aminothiazole. Electro-analysis, 20 (2008): 1533–1541.
  • [373] I. Cesarino, G. Marino, J. D. Matos, and E. T. G. Cavalheiro, Evaluation of a carbon paste electrode modified with organofunctionalised SBA-15 nanostructured silica in the simultaneous determination of lead, copper and mercury ions. Talanta, 15 (2008): 15–21. http://dx.doi.org/10.1016/j.talanta.2007.06.032[Crossref]
  • [374] J Ruiperéz, M. A. Mendiola, M. Tereza Sevilla, J. R. Procopio, L. Hernández, Application of a macrocyclic thio-hydrazone modified carbon paste electrode to copper speciation in water samples. Electroanalysis, 14 (2002): 532–539. http://dx.doi.org/10.1002/1521-4109(200204)14:7/8<532::AID-ELAN532>3.0.CO;2-#[Crossref]
  • [375] A. Abbaspour and S. S. M. Moosavi, Chemically modified carbon paste electrode for determination of copper(II) by potentiometric method. Talanta, 56 (2002): 91–96. http://dx.doi.org/10.1016/S0039-9140(01)00549-5[Crossref]
  • [376] Y. Zhang, X. Q. Lu, K. M. Zhu, Z. H. Wang, and J. W. Kang, Voltammetric detection of traces of copper using a casbon paste electrode modified with tetraphenylporphyrin. Analytical Letters, 35 (2002): 369–381. http://dx.doi.org/10.1081/AL-120002536[Crossref]
  • [377] C. T. Gautier, W. T. L. da Silva, M. O. O. Rezende, and N. El Murr, Sensitive and reproducible quantification of Cu2+ by stripping with a carbon paste electrode modified with humic acid. Journal of Environmental Science Health, Part A; 38 (2003): 1811–1823. http://dx.doi.org/10.1081/ESE-120022880[Crossref]
  • [378] S. Yang, X.-Q. Lu, Y.-H. Xue, X.-Q. Feng, and X.-F. Wang, 4-methoxy-2,5-bis(3,5-dimethylpyrazoyl)-1,3,5-triazine modified carbon paste electrode for trace Cu(II) determination by differential pulse voltammetry. Rare Metals, 22 (2003): 250–253.
  • [379] I. Jureviciutė and A. Malinauskas, Preparation of 2-mercaptobenzothiazole modified carbon paste electrode and its application to the stripping analysis of copper. Chemia Analyticzna (Warsaw), 49 (2004): 339–349.
  • [380] A. F. Danet, D. Neagu, M. P. Dondoi, and N. Iliescu, Anodic stripping voltammetric determination of copper(II) with salicylaldoxime carbon paste electrodes. Revista de Chimie (Bucharest), 55 (2004): 1–4.
  • [381] S. Kilinc Alpat, Ü. Yuksel, and H. Akçay, Development of a novel carbon paste electrode containing a natural zeolite for the voltammetric determination of copper. Electrochemistry Communications, 7 (2005): 130–134. http://dx.doi.org/10.1016/j.elecom.2004.11.017[Crossref]
  • [382] N. Liu and J. F. Song, Catalytic adsorptive stripping voltammetric determination of copper(II) on a carbon paste electrode. Analytical and Bioanalytical Chemistry, 383 (2005): 358–364. http://dx.doi.org/10.1007/s00216-005-3412-0[Crossref]
  • [383] E. C. Canpolat, E. Sar, N. Y. Coskun, and H. Cankurtaran, Determination of trace amounts of copper in tap water samples with a calix[4] arene modified carbon paste electrode by differential pulse anodic stripping voltammetry. Electroanalysis, 19 (2007): 1109–1115. http://dx.doi.org/10.1002/elan.200603829[Crossref]
  • [384] J. H. Yoon, G. Muthuraman, S. B. Yoon, and M. S. Won, Pt-nanoparticle incorporated carbon paste electrode for the determination of Cu(II) ion by anodic stripping voltammetry. Electroanalysis, 19 (2007): 1160–1166. http://dx.doi.org/10.1002/elan.200703835[Crossref]
  • [385] B. C. Janegitz, L. H. Marcolino, and O. Fatibello Filho, Anodic stripping voltammetric determination of copper (II) in wastewaters using a carbon paste electrode modified with chitosan. Quimica Nova 30 (2007): 1673–1676. [Crossref]
  • [386] M. A. Taher, M. Esfandyarpour, S. Abbasi, and A. Mohadesi, Indirect determination of trace copper(II) by adsorptive stripping voltammetry with zincon at a carbon paste electrode. Electroanalysis, 20 (2008): 374–278. http://dx.doi.org/10.1002/elan.200703976[Crossref]
  • [387] H. M. Abu Shawish, S. M. Saadeh, and A. R. Hussein, Enhanced sensitivity for Cu(II) ions by a salicylidine-functionalized polysiloxane carbon paste electrode. Talanta, 76 (2008): 941–948. http://dx.doi.org/10.1016/j.talanta.2008.04.063[Crossref]
  • [388] S. K. Alpat, S. Alpat, B. Kutlu, O. Ozbayrak, and H. B. Buyukisik, Development of biosorption-based algal biosensor for Cu(II) using Tetraselmis chuii. Sensors & Actuators B, Chemical; 128 (2008): 273–278. http://dx.doi.org/10.1016/j.snb.2007.06.011[Crossref]
  • [389] K. H. Lubert and L. Beyer, Carbon paste electrode modified with the copper(II) complex of N-benzoyl-N′,N′-Di-N-butyl-thiourea-voltammetric behavior and response to copper(II). Solvent Extraction and Ion Exchange, 26 (2008): 321–331. http://dx.doi.org/10.1080/07366290802053645[Crossref]
  • [390] G. Marino, M. F. Bergamini, M. F. S. Teixeira, and E. T. G. Cavalheiro, Evaluation of a carbon paste electrode modified with organofunctionalized amorphous silica in the cadmium determination in a differential pulse anodic stripping voltammetric procedure. Talanta, 59 (2003): 1021–1028. http://dx.doi.org/10.1016/S0039-9140(03)00004-3[Crossref]
  • [391] E. Shams and R. Torabi, Determination of nanomolar concentrations of cadmium by anodicstripping voltammetry at a carbon paste electrode modified with zirconium phosphated amorphous silica. Sensors & Actuators B, Chemical; 117 (2006): 86–92. http://dx.doi.org/10.1016/j.snb.2005.10.049[Crossref]
  • [392] I. Cesarino, G. Marino, J. D. R. Matos, and E. T. G. Cavalheiro, Using the organofunctionalised SBA-15 nanostructured silica as a carbon paste electrode modifier: Determination of cadmium ions by differential anodic pulse stripping voltammetry. Journal of Brazilian Chemical Society, 18 (2007): 810–817.
  • [393] M. H. Mashhadizadeh, K. Eskandari, A. Foroumadi, and A. Shafiee, Self-assembled mercapto-compound-gold-nanoparticle-modified carbon paste electrode for potentiometric determination of cadmium(II). Electroanalysis, 20 (2008): 1891–1896. http://dx.doi.org/10.1002/elan.200804264[Crossref]
  • [394] Y.-F. Kuang, J.-L. Zou, L.-Z. Ma, Y.-J. Feng, and P.-H. Deng, Determination of trace Cd(II) in water sample using 1,10-phenanthroline-5,6-dione modified carbon paste electrode. Fenxi Huaxue (Chinese Journal of Analytical Chemistry), 36 (2008): 103–106.
  • [395] K. Fanta and B. S. Chandravanshi, Differential pulse anodic stripping voltammetric determination of cadmium(II) with N-p-chlorophenylcinnamohydroxamic acid modified carbon paste electrode. Electroanalysis, 13 (2001): 484–492. http://dx.doi.org/10.1002/1521-4109(200104)13:6<484::AID-ELAN484>3.0.CO;2-M[Crossref]
  • [396] W. Yantasee, Y.-H. Lin, G. E. Fryxell, and B. J. Busche, Simultaneous detection of cadmium, copper, and lead using a carbon paste electrode modified with carbamoyl-phosphonic acid self-assembled monolayer on mesoporous silica (SAMMS). Analytica Chimica Acta, 502 (2004): 207–212. http://dx.doi.org/10.1016/j.aca.2003.10.001[Crossref]
  • [397] I. Adraoui, M. E. Rhazi, and A. Amine, Fibrinogencoated bismuth film electrodes for voltammetric analysis of lead and cadmium using the batch injection analysis. Analytical Letters, 40 (2007): 349–368. http://dx.doi.org/10.1080/00032710600964676[Crossref]
  • [398] L.-Y. Cao, J.-B. Jia, and Z.-H. Wang, Sensitive determination of cadmium and lead by using differential pulse stripping voltammetry with in-situ bismuth-modified zeolite doped carbon paste electrodes. Electrochimica Acta, 53 (2008): 2177–2182. http://dx.doi.org/10.1016/j.electacta.2007.09.024[Crossref]
  • [399] C.-G. Hu, K.-B. Wu, X. Dai, and S.-S. Hu, Simultaneous determination of lead(II) and cadmium(II) at a diacetyl-dioxime modified carbon paste electrode by differential pulse stripping voltammetry. Talanta, 60 (2003): 17–24. http://dx.doi.org/10.1016/S0039-9140(03)00116-4[Crossref]
  • [400] M. G. Roa, S. M. T. Ramirez, M. A. R. Romero, and L. Galicia, Determination of lead and cadmium using a poly-cyclodextrin-modified carbon paste electrode with anodic stripping voltammetry. Analytical and Bioanalytical Chemistry, 377 (2003): 763–769. http://dx.doi.org/10.1007/s00216-003-2126-4[Crossref]
  • [401] V. S: Ijeri and A. K. Srivastava, Voltammetric determination of lead at chemically modified electrodes based on crown ethers. Analytical Sciences (Japan), 17 (2001): 605–608. http://dx.doi.org/10.2116/analsci.17.605[Crossref]
  • [402] W. Yantasee, Y. H. Lin, T. S. Zemanian, and G. E. Fryxell, Voltammetric detection of lead(II) and mercury(II) using a carbon paste electrode modified with thiol self-assembled monolayer on mesoporous silica (SAMMS). Analyst (UK), 128 (2003): 467–462. http://dx.doi.org/10.1039/b300467h[Crossref]
  • [403] W. Ouangpipat, T. Lelasattarathkul, C. Dongduen, and S. Liawruangrath, Bioaccu-mulation and determination of lead using treated-pennisetum-modified carbon paste electrode. Talanta, 61 (2003): 455–464. http://dx.doi.org/10.1016/S0039-9140(03)00316-3[Crossref]
  • [404] S. Majid, M. El Rhazi, A. Amine, A. Curulli, and G. Palleschi, Carbon paste electrode bulkmodified with the conducting polymer poly(1,8-diaminonaphthalene): Application to lead determination. Microchimica Acta, 143 (2003): 195–204. http://dx.doi.org/10.1007/s00604-003-0058-5[Crossref]
  • [405] A. Rahmani, M. F. Mousavi, S. M. Golabi, M. Shamsipur, H. Sharghi, Voltammetric determination of lead(II) using chemically modified carbon paste with bis[1-hydroxy-9,10,-anthraquinone-2-methyl]sulfide. Chemia Analyticzna (Warsaw), 49 (2004): 359–368.
  • [406] I. Adraoui, M. El Rhazi, A. Amine, L. Idrissi, A. Curulli, and G. Palleschi, Lead determination by anodic stripping voltammetry using a p-phenylenediamine modified carbon paste electrode. Electroanalysis, 17 (2005): 685–693. http://dx.doi.org/10.1002/elan.200403140[Crossref]
  • [407] E. Shams, F. Alibeygi, and R. Torabi, Determination of nanomolar concentrations of Pb(II) using carbon paste electrode modified with zirconium phosphated amorphous silica. Electroanalysis, 18 (2006): 773–778. http://dx.doi.org/10.1002/elan.200503448[Crossref]
  • [408] R. Torabi, E. Shams, M. A. Zolfigol, and S. Afshar, Anodic stripping voltammetric determination of lead(II) with a 2-aminopyridinated-silica modified carbon paste electrode. Analytical Letters, 39 (2006): 2643–2655. http://dx.doi.org/10.1080/00032710600755371[Crossref]
  • [409] M. D. Vásquez, M. L. Tascón, L. Deban, Determination of Pb(II) with a dithizone-modified carbon paste electrode. Journal of Enviromental Sciences, 41 (2006): 2735–274
  • [410] R. E. Mojica Elmer, S. P. Gomez, J. R. L. Micor, and C. C. Deocaris, Lead detection using a pineapple bioelectrode. Philippine Agricultural Sciences, 89 (2006): 134–140.
  • [411] M. Ghlaci, B. Rezaei, and R. J. Kalbasi, High selective SiO2-Al2O3 mixed-oxide modified carbon paste electrode for anodic stripping voltammetric determination of Pb(II). Talanta, 73 (2007): 37–45. http://dx.doi.org/10.1016/j.talanta.2007.02.026
  • [412] D. Sun, C.-D. Wan, G. Li, and K.-B. Wu, Electrochemical determination of lead(II) using a montmorillonite calcium-modified carbon paste electrode. Microchimica Acta, 158 (2007): 255–260. http://dx.doi.org/10.1007/s00604-006-0686-7[Crossref]
  • [413] M. B. Gholivand and M. Malekian, Determination of trace amount of lead(II) in sweet fruit-flavored powder drinks by differential pulse adsorptive stripping voltammetry at carbon paste electrode. Electroanalysis, 20 (2008): 367–373. http://dx.doi.org/10.1002/elan.200704019[Crossref]
  • [414] T. Mikysek, I. Švancara, K. Vytřas, and B. G. Banica, F. G, Functionalised resin-modified carbon paste sensor for the voltammetric determination of Pb(II) within a wide concentration range. Electrochemistry Communications, 10 (2008): 242–245. http://dx.doi.org/10.1016/j.elecom.2007.11.032[Crossref]
  • [415] R. Y. A. Hassan, I. H. I. Habib, and H. N. A. Hassan, Voltammetric determination of lead (II) in medical lotion and biological samples ising chitosan-carbon paste electrode. International Journal of Electrochemical Sciences, 3 (2008): 935–945.
  • [416] J. Konvalina, Carbon Paste Electrodes in Stripping Potentiometry, Dissertation Thesis (in Czech). (Pardubice: University of Pardubice, 2001), pp. 75–85.
  • [417] H.-Q. Xie, Y.-H. Li, F.-Q. Zhou, H.-S. Guo, and B. Yi, Determination of trace tin by adsorptive voltammetry at an alizarin violet modified carbon paste electrode. Fenxi Huaxue (Chinese Journal of Analytical Chemistry), 29 (2001): 822–824.
  • [418] Y.-H. Li, H.-Q. Xie, F.-Q. Zhou, and H. S. Guo, Determination of trace tin by anodic stripping voltammetry at a carbon paste electrode. Electroanalysis, 18 (2006): 976–980. http://dx.doi.org/10.1002/elan.200503484[Crossref]
  • [419] W.-S. Huang, Voltammetric determination of bismuth in water and nickel metal samples with a sodium montmoril-lonite (SWy-2) modified carbon paste electrode. Microchimica Acta, 14 (2004): 125–129. http://dx.doi.org/10.1007/s00604-003-0104-3[Crossref]
  • [420] H.-S. Guo, Y.-H. Li, P.-F. Xiao, and N.-Y. He, Determination of trace amount of bismuth(III) by adsorptive anodic stripping voltammetry at carbon paste electrode. Analytica Chimica Acta, 534 (2005): 143–147. http://dx.doi.org/10.1016/j.aca.2004.04.020[Crossref]
  • [421] H.-S. Guo, Y.-H. Li, X.-K. Chen, L.-B. Nie and N.-Y. He, Determination of trace antimony(III) by adsorption stripping voltammetry at carbon paste electrode. Sensors, 5 (2005): 284–292. http://dx.doi.org/10.3390/s5040284[Crossref]
  • [422] D. Watanabe, T. Furuike, M. Midorikawa, and T. Tanaka, Simultaneous determination of copper and antimony by differential pulse anodic stripping voltammetry with a carbon-paste electrode. Bunseki Kagaku (Japan Analyst), 54 (2005): 907–912. http://dx.doi.org/10.2116/bunsekikagaku.54.907[Crossref]
  • [423] C. D. Mattos, D. R. do Carmo, M. F. de Oliveira, and N. R. Stradiotto, Voltammetric determination of total iron in fuel ethanol using a 1,10-fenanthroline / Nafion carbon paste-modified electrode. International Journal of Electrochemical Science, 3 (2008): 338–345.
  • [424] H. R. Pouretedal and M. H Keshavarz, Cyclam modified carbon paste electrode as a potentiometric sensor for determination of cobalt(II) ions. Gaodeng Xuexiao Huaxue Xuebao (Chemical Research in Chinese Universities), 21 (2005): 28–31.
  • [425] M. M. Ardakani, Z. Akrami, H. Kazemian, and H. R. Zare, Accumulation and voltammetric determination of cobalt at zeolite-modified electrodes. Journal of Analytical Chemistry, 63 (2008): 184–191. [Crossref]
  • [426] P. S. González, V. A. Cortínez, and C. A. Fontan, Determination of nickel by anodic adsorptive stripping voltammetry with a cation exchanger-modified carbon paste electrode. Talanta, 58 (2002): 679–690. http://dx.doi.org/10.1016/S0039-9140(02)00381-8[Crossref]
  • [427] T. F. Oliveira, M. F. de Oliveira, B. V. Roberto, and S. N Ramos, Determination of nickel in fuel ethanol using a carbon paste modified electrode containing dimethylglyoxime. Microchimica Acta, 155 (2006): 397–401. http://dx.doi.org/10.1007/s00604-006-0638-2[Crossref]
  • [428] M. Galík, I. Švancara, and K. Vytřas, Stripping voltammetric determination of platinum metals at carbon paste electrodes modified with cationic surfactants; in Sensing in Electroanalysis, eds. K. Vytřas and K. Kalcher. (University of Pardubice, 2005), pp. 89–107.
  • [429] I. Švancara, M. Galík, and K. Vytřas, Stripping voltammetric determination of platinum metals at a carbon paste electrode modified with cationic surfactants. Talanta, 72 (2007): 512–518. http://dx.doi.org/10.1016/j.talanta.2006.11.014[Crossref]
  • [430] B. Rezaei; M. Ghiaci, and M. E. Sedaghat, A selective modified bentonite-porphyrin carbon paste electrode for determination of Mn(II) by using anodic stripping voltammetry. Sensors & Actuators B, Chemical; 131 (2008): 439–447. http://dx.doi.org/10.1016/j.snb.2007.12.017[Crossref]
  • [431] M. Rievaj, P. Tomčík, Z. Janošíková, D. Bustin, and R. G. Compton, Determination of trace Mn(II) in pharma-ceutical diet supplements by cathodic stripping voltammetry on bare carbon paste electrode. Chemia Analyticzna (Warsaw), 53 (2008): 153–161.
  • [432] I. Švancara, P. Foret, and K. Vytřas, A Study on the determination of chromium as chromate at a carbon paste electrode modified with surfactants. Talanta, 64 (2004): 844–852. http://dx.doi.org/10.1016/j.talanta.2004.03.062[Crossref]
  • [433] A. M. Gevorgyan, S. V. Vakhnenko, and A. T. Artykov, Thick-film graphite-containing electrodes for determining selenium by stripping voltammetry. Journal of Analytical Chemistry, 59 (2004): 371–380. http://dx.doi.org/10.1023/B:JANC.0000022791.76804.26[Crossref]
  • [434] M. E. Sánchez Fernández, L. M. Cubillana Aguilera, J. M. Palacios Satander, I. Naranjo Rodríguez, and J. L. H. H. de Cisnéros, An oxidative procedure of the electrochemical determination of chromium(VI) using modified carbon paste electrodes. Bulletin of Electrochemistry, 21 (2005): 529–535.
  • [435] X.-W. Zheng, Z.-J. Zhang, Q. Wang, and H.-C. Ding, Electrogenerated chemiluminescence determination of Mo(VI) based on its sensitizing effect in electrochemical reduction luminol. Fenxi Huaxue (Chinese Journal of Analytical Chemistry), 31 (2003): 1076–1078.
  • [436] Y.-H. Li, Y.-X. Wang, and M.-H. Huang, Determination of trace vanadium by adsorptive stripping voltammetry at a carbon paste electrode. Electroanalysis, 20 (2008): 1440–1444. http://dx.doi.org/10.1002/elan.200804200[Crossref]
  • [437] J.-N. Li, J. Zhang, P.-H. Deng, and J.- J. Fei, Carbon paste electrode for trace zirconium(IV) determination by adsorption voltammetry. Analyst (UK), 126 (2001): 2032–2035. [Crossref]
  • [438] J.-N. Li, J. Zhang, P.-H. Deng, and Y.-Q. Peng, Adsorption voltammetry of the mix-polynuclear complex of zirconium-calcium-alizarin red S at a carbon paste electrode. Analytica Chimica Acta, 431 (2001): 81–87. http://dx.doi.org/10.1016/S0003-2670(00)01200-9[Crossref]
  • [439] Y.-H. Li, Q.-L. Zhao, and M.-H: Huang, Adsorptive anodic stripping voltammetry of zirconium(IV)-alizarin red S complex at a carbon paste electrode. Microchimica Acta, 157 (2007): 245–249. http://dx.doi.org/10.1007/s00604-006-0655-1[Crossref]
  • [440] S.-M. Liu, J.-N. Li and X. Mao, Stripping voltammetric determination of zirconium with complexing preconcentration of zirconium(IV) at a morin-modified carbon paste electrode. Electroanalysis, 15 (2003): 1751–1755. http://dx.doi.org/10.1002/elan.200302750[Crossref]
  • [441] S.-M. Liu, J.-N. Li, and X. Mao, Determination of zirconium by second-order derivative adsorption voltammetry of zirconium (IV)-morin complex at a carbon paste electrode. Fenxi Huaxue (Chinese Journal of Analytical Chemistry), 32 (2004): 195–197.
  • [442] S. M. Liu, J.-N. Li, S.-J. Zhang, and J. Q. Zhao, Study on the adsorptive stripping voltammetric determination of trace cerium at a carbon paste electrode modified in situ with cetyltrimethylammonium bromide. Applied Surface Science, 252 (2005): 2078–2084. http://dx.doi.org/10.1016/j.apsusc.2005.03.169[Crossref]
  • [443] J.-N. Li, S.-M. Liu, Z.-H. Yan, X. Mao, and P. Gao, Determination of trace metals in industrial boron carbide by solid sampling optical emission spectrometry. Optimization of DC arc excitation. Microchimica Acta, 154 (2006): 241–243. http://dx.doi.org/10.1007/s00604-006-0514-0[Crossref]
  • [444] M. Javanbakht, H. Khoshsafar, M. R. Ganjali, P. Norouzi, A Badei, and A. Hashe-minasa, Stripping voltammetry of Ce(III) with a chemically modified carbon paste electrode containing functionalized nanoporous silica gel. Electroanalysis, 20 (2008): 203–206. http://dx.doi.org/10.1002/elan.200704038[Crossref]
  • [445] S.-M. Liu, L.-H. Yi, and J.-N. Li, Studies on anodic adsorptive stripping voltammetry of gallium(III)-alizarin complexone at carbon paste electrodes and its application. Chinese Journal of Analytical Chemistry, 31 (2003): 1489–1492.
  • [446] Y.-H. Li, Q.-L. Zhao, and M.-H. Huang, Cathodic adsorptive voltammetry of gallium-alizarin red S complex at a carbon paste electrode. Electroanalysis, 17 (2005): 343–347. http://dx.doi.org/10.1002/elan.200203096[Crossref]
  • [447] J. Zhang, J.-N. Li, and P.-H. Deng, Adsorption voltammetry of the scandium-alizarin red S complex onto a carbon paste electrode. Talanta, 54 (2001): 561–566. http://dx.doi.org/10.1016/S0039-9140(00)00668-8[Crossref]
  • [448] J.-N. Li, F.-Y. Yi, D.-S. Shen, and J. J. Fei, Adsorptive stripping voltammetric study of scandium-alizarin complexan complex at a carbon paste electrode. Analytical Letters, 35 (2002): 1361–1372. http://dx.doi.org/10.1081/AL-120006672[Crossref]
  • [449] S.-M. Liu, J.-N. Li, and P. Gao, Anodic adsorptive stripping voltammetry at a carbon paste electrode for determination of trace thorium. Analytical Letters, 36 (2003): 1381–1392. http://dx.doi.org/10.1081/AL-120021093[Crossref]
  • [450] J.-N. Li, F.-Y. Yi, Z.-M. Jiang, and J.-J. Fei, Adsorptive voltammetric study of Th(IV) alizarin complex at a carbon paste electrode. Microchimica Acta, 143 (2003): 287–292. http://dx.doi.org/10.1007/s00604-003-0070-9[Crossref]
  • [451] K.-B. Ji and S.-S. Hu, Square wave voltammetric determination of trace amounts of europium(III) at montmoril-lonite-modified carbon paste electrodes. Collection of Czecho-slovak Chemical Communations, 69 (2004): 1590–1599. http://dx.doi.org/10.1135/cccc20041590[Crossref]
  • [452] J.-N. Li, S.-M. Liu, X. Mao, P. Gao, and Z.-H. Yan, Trace determination of rare earths by adsorption voltammetry at a carbon paste electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 561 (2004): 137–142. http://dx.doi.org/10.1016/j.jelechem.2003.06.012[Crossref]
  • [453] O. A. Farghaly, A novel method for determination of magnesium in urine and water samples with mercury film-plated carbon paste electrode. Talanta, 63 (2004): 497–501. http://dx.doi.org/10.1016/j.talanta.2003.12.022[Crossref]
  • [454] N. Liu and J.-F. Song, Determination of free calcium at a carbon paste electrode adsorptive stripping voltam-metric method. Fenxi Huaxue (Chinese Journal of Analytical Chemistry), 33 (2005): 1261–1264.
  • [455] M. F. S. Teixeira, F. C. Moraes, O. F. Filho, and N. Bocchi, Voltammetric determination of lithium ions in pharma-ceutical formulation using a L-MnO2-modified carbon-paste electrode. Analytica Chimica Acta, 443 (2001): 249–255. http://dx.doi.org/10.1016/S0003-2670(01)01213-2[Crossref]
  • [456] M. F. S. Teixeira, F. C. Moraes, E. T. G. Cavalheiro, and N. Bocchi, Differential pulse anodic voltammetric determination of lithium ions in pharmaceutical formulations using a carbon paste electrode modified with spinel-type manganese oxide. Journal of Pharmaceutical and Biomedical Analysis, 31 (2003): 537–543. http://dx.doi.org/10.1016/S0731-7085(02)00726-4[Crossref]
  • [457] M. F. S. Teixeira, M. F. Bergamini, and N. Bocchi, Lithium ions determination by selective pre-concentration and differential pulse anodic stripping voltammetry using a carbon paste electrode modified with a spinel-type manganese oxid. Talanta, 62 (2004): 603–609. http://dx.doi.org/10.1016/j.talanta.2003.09.004[Crossref]
  • [458] I. Szymanska, H. Radecka, J. Radecki, P. A. Gale, and C. N. Warriner, Ferrocene-substituted calix[4]pyrrole modified carbon paste electrodes for anion detection in water samples. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 591 (2006): 223–228. http://dx.doi.org/10.1016/j.jelechem.2006.04.007[Crossref]
  • [459] A. Walcarius, G. Lefévre, J. P. Rapin, G. Renaudin, and M. François, Voltammetric detection of iodide after accumulation by Friedel’s salt. Electroanalysis, 13 (2001): 313–320. http://dx.doi.org/10.1002/1521-4109(200103)13:4<313::AID-ELAN313>3.0.CO;2-Q[Crossref]
  • [460] Q. He, J.-J. Fei, and S. H. Hu, Voltammetric method based on an ion-pairing reaction for the determination of trace amount of iodide at carbon-paste electrodes. Analytical Sciences (Japan), 19 (2003): 681–686. http://dx.doi.org/10.2116/analsci.19.681[Crossref]
  • [461] H. Hamidi, E. Shams, B. Yadollahi, and F. K. Esfahani, Fabrication of bulk-modified carbon paste electrode containing α-PW12O403− polyanion supported on modified silica gel: Preparation, electrochemistry and electrocatalysis. Talanta, 74 (2008): 909–914. http://dx.doi.org/10.1016/j.talanta.2007.07.026[Crossref]
  • [462] H. Wang, G. Xu, and S. Dong, Electrochemiluminescence of dichlorotris (1,10-phenanthroline) ruthenium(II) with peroxydisulfate in purely aqueous solution at carbon paste electrode. Microchemical Journal, 72 (2002): 43–48. http://dx.doi.org/10.1016/S0026-265X(01)00156-4[Crossref]
  • [463] J. B. Raoof, R. Ojani, and H. Karimi Maleh, Electrocatalytic determination of sulfite at the surface of new ferrocene derivative-modified carbon paste electrode. International Journal of Electrochemical Sciences, 2 (2007): 257–269.
  • [464] J. B. Raoof, R. Ojani, and H. Karimi-Maleh, Electrocatalytic determination of sulfite using 1-[4-(ferrocenyl-ethynyl)phenyl]-1-ethanone modified carbon paste electrode. Asian Journal of Chemistry, 20 (2008): 483–494.
  • [465] S. S. Kumar and S. S. Narayanan, Electrocatalytic oxidation of sulfite on a nickel aquapentacyanoferrate modified electrode: Application for simple and selective determination. Electroanalysis, 20 (2008): 1427–1433. http://dx.doi.org/10.1002/elan.200704196[Crossref]
  • [466] J. C. Quintana, L. Idrissi, G. Palleschi, P. Albertano, A. Amine, M. El Rhazi, and D. Moscone, Investigation of amperometric detection of phosphate: Application in seawater and cyanobacterial biofilm samples. Talanta, 63 (2004): 567–574. http://dx.doi.org/10.1016/j.talanta.2003.11.040[Crossref]
  • [467] Y. Xue, X.-W. Zheng, and G.-X. Li, Determination of phosphate in water by means of a new electrochemi-luminescence technique based on the combination of liquid-liquid extraction with benzene-modified carbon paste electrode. Talanta, 72 (2007): 450–456. http://dx.doi.org/10.1016/j.talanta.2006.11.003[Crossref]
  • [468] V. M. Ivama and S. H. P. Serrano, Rhodium-prussian blue modified carbon paste electrode (Rh-PBMCPE) for amperometric detection of hydrogen peroxide. Journal of Brazilian Chemical Society, 14 (2003): 551–555.
  • [469] C.-Y. Li, Y. Chen, C.-F. Wang, H.-B. Li, and Y.-Y. Chen, Electrocatalytic oxidation of H2O2 at a carbon paste electrode modified with a nickel (II)-5, 11, 17, 23-tetra-tert-butyl-25, 27-bis(Diethylcarbamoylmethoxy) calix[4]arene complex and its application. Wuhan University, Journal of Natural Sciences, 8 (2003): 857–860.
  • [470] Y. H. Lin, X. L. Cui, and L. Y. Li, Low-potential amperometric determination of hydrogen peroxide with a carbon paste electrode modified with nanostructured cryptomelane-type manganese oxides. Electrochemistry Communications, 7 (2005): 166–172. http://dx.doi.org/10.1016/j.elecom.2004.12.005[Crossref]
  • [471] E. S. Ribeiro, S. L. P. Dias, Y. Gushikem, and L. T. Kubota, Cobalt(II) porphyrin complex immobilized on the binary oxide SiO2/Sb2O3: electrochemical properties and dissolved oxygen reduction study. Electrochimica Acta, 49 (2004): 829–834. http://dx.doi.org/10.1016/j.electacta.2003.10.001[Crossref]
  • [472] Q. He, C.-G. Hu, X.-P. Dang, Y.-L. Wei, and S. Hua, Electrocatalytic reduction of dioxygen at cetyltrimethyl-ammonium bromide modified carbon paste electrode. Electro-chemistry, 72 (2004): 5–8.
  • [473] M. P. Francisco, W. S. Cardoso, and Y. Gushikem, Carbon paste electrodes of the mixed oxide SiO2 / Nb2O5 prepared by sol-gel method: dissolved dioxygen sensor. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 574 (2005): 291–297. http://dx.doi.org/10.1016/j.jelechem.2004.08.010
  • [474] G.-H. Lu, D.-W. Long, T. Zhan, and H.-Y. Zhao, The electrochemical behavior of a ruthenium (II) - Polypyrindine complex and its electrocatalyis of nitrite. Fenxi Huaxue (Chinese Journal of Analytical Chemistry), 30 (2002): 1115–1118.
  • [475] S.-Q. Liu and H.-X. Ju, Nitrite reduction and detection at a carbon paste electrode containing hemoglobin and colloidal gold. Analyst (UK), 128 (2003): 1420–1424. http://dx.doi.org/10.1039/b310100b[Crossref]
  • [476] M. Badea, A. Amine, M. Benzine, A. Curulli, D. Moscone, A. Lupu, G. Volpe, and G. Palleschi, Rapid and selective electrochemical determination of nitrite in cured meat in the presence of ascorbic acid. Microchimica Acta, 147 (2004): 51–58. http://dx.doi.org/10.1007/s00604-004-0220-8[Crossref]
  • [477] W. S. Cardoso and Y. Gushikem, Electrocatalytic oxidation of nitrate on a carbon paste electrode modified with Co(II) porphyrion adsorbed on SiO2 / SnO2 / phosphate prepared by the sol-gel method. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 583 (2005): 300–306. http://dx.doi.org/10.1016/j.jelechem.2005.06.015[Crossref]
  • [478] L. Idrissi, A. Amine, M. El Rhazi, and F. E. Cherkaoui, Electrochemical detection of ntrite based on the reaction with 2,3-diaminonaphthalene. Analytical. Letters, 38 (2005): 1943–1955. http://dx.doi.org/10.1080/00032710500232752[Crossref]
  • [479] R. Ojani, J. B. Raoof, and E. Zarei, Electrocatalytic reduction of nitrite using ferricyanide: Application for its simple and selective determination. Electrochim. Acta, 52 (2006): 753–759. http://dx.doi.org/10.1016/j.electacta.2006.06.005[Crossref]
  • [480] R. Ojani, J. B. Raoof, and E. Zarei, Poly(o-toluidine) modified carbon paste electrode: A sensor for electrocatalytic reduction of nitrite. Electroanalysis, 20 (2008): 379–385. http://dx.doi.org/10.1002/elan.200704045[Crossref]
  • [481] R. Ojani, V. Rahmanifar, and P. Naderi, Electrocatalytic reduction of nitrite by phosphotungstic heteropolyanion. application for its simple and selective determination. Electroanalysis, 20 (2008): 1092–1098. http://dx.doi.org/10.1002/elan.200704157[Crossref]
  • [482] M. A. Kamyabi and F. Aghajanloo, Electrocatalytic oxidation and determination of nitrite on carbon paste electrode modified with oxovanadium(IV)-4-methyl salophen. Journal of Electroanalytical Chemistry and Interfacial Electro-chemistry, 614 (2008): 157–165. http://dx.doi.org/10.1016/j.jelechem.2007.11.026
  • [483] E. Casero, F. Pariente, E. Lorenzo, L. Beyer, and J. Losada, Electrocatalytic oxidation of nitric oxide at 6,17-diferrocenyldibenzo[b,i]5,9,14,18-tetraaza[14]annulen-Ni(II) modified electrodes. Electroanalysis, 13 (2001): 1411–1416. http://dx.doi.org/10.1002/1521-4109(200111)13:17<1411::AID-ELAN1411>3.0.CO;2-G
  • [484] H. R. Zare and A. Nasirizadeh, Electrocatalytic characteristics of hydrazine and hydroxylamine oxidation at coumestan modified carbon paste electrode. Electroanalysis, 18 (2006): 507–512. http://dx.doi.org/10.1002/elan.200503408[Crossref]
  • [485] C. A. Pessoa, Y. Gushikem, and S. Nagasaki, Cobalt porphyrin immobilized on a niobium(V) oxide grafted - silica gel surface: Study of the catalytic oxidation of hydrazine. Electroanalysis, 14 (2002): 1072–1076. http://dx.doi.org/10.1002/1521-4109(200208)14:15/16<1072::AID-ELAN1072>3.0.CO;2-X[Crossref]
  • [486] S. T. Fujiwara, Y. Gushikem, C. A. Pessoa, and S. Nakagaki, Electrochemical studies of a new iron porphyrin entrapped in a propylpyridiniumsilsesquioxane polymer immobilized on a SiO2 / Al2O3 surface. Electroanalysis, 17 (2005): 783–788. http://dx.doi.org/10.1002/elan.200403153
  • [487] W. Siangproh, O. Chailapakul, R. Laocharoensuk, and J. Wang, Microchip capillary electrophoresis / electro-chemical detection of hydrazine compounds at a cobalt phthalo-cyanine modified electrochemical detector. Talanta, 67 (2005): 903–907. http://dx.doi.org/10.1016/j.talanta.2005.04.024[Crossref]
  • [488] A. Abbaspour and M. A. Kamyabi, Electrocatalytic oxidation of hydrazine on a carbon paste electrode modified by hybrid hexacyanoferrates of copper and cobalt films. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 576 (2005): 73–83. http://dx.doi.org/10.1016/j.jelechem.2004.10.008[Crossref]
  • [489] J. B. Raoof, R. Ojani, and M. Ramine, Electrocatalytic oxidation and voltammetric determination of hydrazine on the tetrabromo-p-benzoquinone modified carbon paste electrode. Electroanalysis, 19 (2007): 597–603. http://dx.doi.org/10.1002/elan.200603760[Crossref]
  • [490] C. D. C. Conceiçao, R. C. Faria, O. Fatibello, and A. A. Tanaka, Electrocatalytic oxidation and voltammetric determination of hydrazine in industrial boiler feed water using a cobalt phthalocyanine-modified electrode. Analytical Letters, 41 (2008): 1010–1021. http://dx.doi.org/10.1080/00032710801978525[Crossref]
  • [491] Z. D. Chen and M. Hojo, Determination of phenol using a carbon paste electrode modified with overoxidized polypyrrole/polyvinylpyrrolidone films. Bunseki Kagaku, 56 (2007):669–673. http://dx.doi.org/10.2116/bunsekikagaku.56.669[Crossref]
  • [492] X. Cheng, Q. J. Wang, S. Zhang, W. D. Zhang, P. G. He, and Y. Z. Fang, Determination of four kinds of carbamate pesticides by capillary zone electrophoresis with amperometric detection at a polyamide-modified carbon paste electrode. Talanta, 71 (2007):1083–1087. http://dx.doi.org/10.1016/j.talanta.2006.06.001[Crossref]
  • [493] N. German, S. Armalis, J. Zima, and J. Barek, Voltammetric determination of fluoren-9-ol and 2-acetamidofluorene using carbon paste electrodes. Collection of Czechoslovak Chemical Communications, 70 (2005):292–304. http://dx.doi.org/10.1135/cccc20050292[Crossref]
  • [494] S. Shahrokhian and M. Ghalkhani, Simultaneous voltammetric detection of ascorbic acid and uric acid at a carbon-paste modified electrode incorporating thionine-nafion ion-pair as an electron mediator. Electrochimica Acta, 51 (2006):2599–2606. http://dx.doi.org/10.1016/j.electacta.2005.08.001[Crossref]
  • [495] A. G. Angelikaki and S. T. Girousi, Sensitive detection of tetracycline, oxytetra-cycline, and chlortetracycline in the presence of copper(II) ions using a DNA-modified carbon paste electrode. Chemia Analityczna, 53 (2008):445–454.
  • [496] J. Wang and X.-J. Zhang, Needle-type dual microsensor for the simultaneous monitoring of glucose and insulin. Analytical Chemistry, 73 (2001):844–847. http://dx.doi.org/10.1021/ac0009393[Crossref]
  • [497] J. B. Raoof, R. Ojani, and A. Kiani, Apple-modified carbon paste electrode: A biosensor for selective determination of dopamine in pharmaceutical formulations. Bulletin of Electrochemistry, 21 (2005):223–228.
  • [498] H. R. Zare, N. Nasirizadeh, M. Mazloum- Ardakani, and M. Namazian, Electrochemical properties and electro-catalytic activity of hematoxylin modified carbon paste electrode toward the oxidation of reduced nicotinamide adenine dinucleotide (NADH). Sensors and Actuators B-Chemical, 120 (2006):288–294. http://dx.doi.org/10.1016/j.snb.2006.02.043[Crossref]
  • [499] H. Qi, X.-X. Li, P. Chen, and C.-X. Zhang, Electrochemical detection of DNA hybridization based on polypyrrole/ss-DNA/multi-wall carbon nanotubes paste electrode. Talanta, 72 (2007):1030–1035. http://dx.doi.org/10.1016/j.talanta.2006.12.032[Crossref]
  • [500] K. Jiao, Y. Ren, G. Y. Xu, and X. Z. Zhang, Voltammetric study on deoxyribonucleic acid immobilization and hybridization on stearic acid/ aluminum ion films and the detection of specific gene related to phosphinothricin acethyl-transferase gene from Bacillus Amyloliquefaciens gene. Chinese Journal of Analytical Chemistry, 33 (2005):1381–1384.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11532-009-0097-9
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.