Preferences help
enabled [disable] Abstract
Number of results
2009 | 7 | 3 | 439-445
Article title

QSPR study for the prediction of half-wave potentials of benzoxazines by heuristic method and radial basis function neural network

Title variants
Languages of publication
The half-wave potential (E1/2) is an important electrochemical property of organic compounds. In this work, a quantitative structure-property relationship (QSPR) analysis has been conducted on the half-wave reduction potential (E1/2) of 40 substituted benzoxazines by means of both a heuristic method (HM) and a non-linear radial basis function neural network (RBFNN) modeling method. The statistical parameters provided by the HM model (R2 =0.946; F=152.576; RMSCV=0.0141) and the RBFNN model (R2=0.982; F=1034.171 and RMS =0.0209) indicated satisfactory stability and predictive ability. The obtained models showed that benzoxazines with larger Min valency of a S atom (MVSA), lower Relative number of H atom (RNHA) and Min n-n repulsion for a C-H bond (MnnRCHB) and Minimal Electrophilic Reactivity Index for a C atom (MERICA) can be more easily reduced. This QSPR approach can contribute to a better understanding of structural factors of the organic compounds that contribute to the E1/2, and can be useful in predicting the E1/2 of other compounds. [...]
Physical description
1 - 9 - 2009
21 - 6 - 2009
  • [1] B.B. Xia, W.P. Ma, B. Zheng, X.Y. Zhang, B.T. Fan, Eur. J. Med. Chem. 43, 1489 (2008)[Crossref]
  • [2] J. Ghasemi, S. Saaidpour, J. Inclusion Phenom. Macrocyclic Chem. 60, 339 (2008)[Crossref]
  • [3] S.S. Godavarthy, R.L. Robinson, K.A.M. Gasem, Fluid Phase Equilib. 264, 122 (2008)[Crossref]
  • [4] A.R. Katritzky, I.B. Stoyanova-Slavova, D.A. Dobchev, M. Karelson, J. Mol. Graphics Modell. 26, 529 (2007)[Crossref]
  • [5] B. Hemmateenejad, M. Shamsipur, Internet Electronic J. Mol. Des. 2, 1 (2003)
  • [6] M. Shamsipur, A. Siroueinejad, B. Hemmateenejad, A. Abbaspour, H. Sharghi, K. Alizadeh, S. Arshadi, J. Electroanal. Chem. 600, 345 (2007)[Crossref]
  • [7] S. Yuan, M. Xiao, G. Zheng, M. Tian, X. Lu, SAR QSAR Environ. Res. 17, 473 (2006)[Crossref]
  • [8] S. Nikolic, A. Milicevic, N. Trinajstic, Croat. Chem. Acta 79, 155 (2006)
  • [9] M.H. Fatemi, M.R. Hadjmohammadi, K. Kamel, P. Biparva, Bull. Chem. Soc. Jpn. 80, 303 (2007)[Crossref]
  • [10] K. Nesmerak, I. Nemec, M. Sticha, K. Waisser, K. Palat, Electrochim. Acta 50, 1431 (2005)[Crossref]
  • [11] A. Toropov, K. Nesmerak, I. Ralka, K. Waisser, K. Palat, Comput. Biol. Chem. 30, 434 (2006)[Crossref]
  • [12] HyperChem 4.0, Hypercube Inc., Gainesville, FL, 1994
  • [13] HyperChem 6.01, Hypercube, Inc., 2000
  • [14] M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, J.J.P. Stewart, J. Am. Chem. Soc. 107, 3898 (1985)[Crossref]
  • [15] J.J.P. Stewart, MOPAC, v.6.0 Quantum Chemistry Program Exchange, Program 455 (Indiana University, Bloomington, IN, 1989)
  • [16] A.R. Katritzky, V.S. Lobanov, M. Karelson, CODESSA: Training Manual (University of Florida, Gainesville, FL, 1995)
  • [17] A.R. Katritzky, V.S. Lobanov, M. Karelson, CODESSA: Reference Manual (University of Florida, Gainesville, FL, 1994)
  • [18] S.C. Basak, B.D. Gute, A.T. Balaban, Croat. Chem. Acta, 77, 331 (2004)
  • [19] J.V. Turner, D.J. Cutler, I. Spence, D.J. Maddalena, J. Comput. Chem. Jpn. 24, 891 (2003) [Crossref]
  • [20] F. Gharagheizi, Computational Materials Science 40, 159 (2007)[Crossref]
  • [21] M. Oblak, M. Randic, T. Solmajer, J. Chem. Inf. Comput. Sci. 40, 994 (2000) [Crossref]
  • [22] W.P. Ma, F. Luan, H.X. Zhang, X.Y. Zhang, M.C. Liu, Z.D. Hu, B.T. Fan, Analyst 131, 1254 (2006)[Crossref]
  • [23] X.J. Yao, A. Panaye, P. Doucet, R.S. Zhang, H.F. Chen, M.C. Liu, Z.D. Hu, B.T. Fan, J. Chem. Inf. Comput. Sci. 44, 1257 (2004) [Crossref]
  • [24] Y.H. Xiang, M.C. Liu, X.Y. Zhang, R.S. Zhang, Z.D. Hu, B.T. Fan, D.J.P. Panaye, J. Chem. Inf. Comput. Sci. 42, 592 (2002) [Crossref]
  • [25] M.J.L. Orr, Introduction to Radial Basis Function Networks (Centre for Cognitive Science, Edinburgh University, Scotland, 1996) (12/06/2001)
  • [26] M.J.L. Orr, MATLAB routines for subset selection and ridge regression in linear neural networks (Centre for Cognitive Science, Edinburgh University, Scotland, 1996) (12/06/2001)
  • [27] A.T. Balaban, S.C. Basak, A. Beteringhe, D. Mills, C.T. Supuran, Mol. Divers. 8, 401 (2004)[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.