Preferences help
enabled [disable] Abstract
Number of results
2009 | 7 | 1 | 47-53
Article title

Study by grazing incident diffraction and surface spectroscopy of amalgams from ancient mirrors

Title variants
Languages of publication
Characterization of four amalgam surfaces, with different alteration degrees from Andalusia historical mirrors, has been carried out by grazing-incidence X-ray diffraction (GIXRD), and other spectroscopic techniques (SEM/EDX, XPS, and REELS). The combination of all these techniques allows determining the corrosion state of the amalgams. The results show that the amalgams are composed in all cases of a binary alloy of tin and mercury. As mercury has high vapour pressure at RT, it slowly segregates and eventually evaporates, it leaves finely divided particles of tin that easily can be oxidize, forming tin monoxide (SnO) and tin dioxide (SnO2). In one of the samples, most of the amalgam remains unoxidized, since Hg0.1Sn0.9 and metallic Sn phases are the major components; in two other samples, Hg0.1Sn0.9 and Sn phases are not detected while SnO2 and SnO phases appear. Finally, in the last studied sample, only SnO2 phase is detected. The surface analyses of these samples by XPS show that, for most of them an unique chemical species (Sn4+) is found. [...]
Physical description
1 - 3 - 2009
23 - 12 - 2008
  • [1] F. Morser, Glass Ind. 42, 244 (1961)
  • [2] P. Hadsund, Stud. Conserv. 38, 3 (1993)[Crossref]
  • [3] J.M.F. Navarro, El Vidrio, 3rd edition (CSIC publications, Madrid, 2003)
  • [4] H. Römich, in: N.H. Tennent (Ed.), The conservation of glass and ceramics. Research, Practice and Training (James and James Science Publishers, London, 1999)
  • [5] L.K. Herrera, A. Duran, M.L. Franquelo, A. Justo, J.L. Perez-Rodriguez, J. Non-Cryst. Solids (in press)
  • [6] I. De Ryck, E. Van Biezen, K. Leyssens, A. Adriaens, P. Storme, F. Adams, J. Cult. Herit. 5,2, 189 (2004)[Crossref]
  • [7] L. Robbiola, K. Rahmouni, C. Chiavari, C. Martini, D. Prandstraller, A. Texier, H. Takenouti, P. Vermaut, Appl. Phys. A: Mater. Sci. Process. 92,1, 161 (2008)[Crossref]
  • [8] L.K. Herrera, A. Duran, M.L. Franquelo, M.C. Jimenez de Haro, A. Justo, J.L. Perez-Rodriguez, J. Cult. Herit., DOI:10.1016/j.culher.2008.06.007 [Crossref]
  • [9] R.A. Ramik, R.M. Organ, J. A. Mandarino, Can. Mineral. 41,3, 649 (2003)[Crossref]
  • [10] S.E. Dunkle, J.R. Craig, J.D. Rimstidt, W.R. Lusardi, Geoarchaeology 19,6, 531 (2004)[Crossref]
  • [11] H. Strandberg, L.-G. Johansson, O. Lindqvist, Werkst korros. 48,11, 721 (1997)[Crossref]
  • [12] L. Robbiola, J.-M. Blengino, C. Fiaud, Corros. Sci. 40,12, 2083 (1998)[Crossref]
  • [13] L.K. Herrera, A. Duran, M.C. Jimenez de Haro, J.L. Perez-Rodriguez, A. Justo, Coalition Electronic Newsletter 14, 10 (2007)
  • [14] J. Rubio-Zuazo, G.R. Castro, Nucl. Inst Meth A. 547, 64 (2005)
  • [15] J. Rubio-Zuazo, G.R. Castro, Rev. Adv. Mater. Sci. 15, 79 (2007)
  • [16] J. Rubio-Zuazo, PhD thesis, Autonomous University of Madrid (Madrid, Spain, 2005)
  • [17] V.M. Jiménez, J.A. Mejías, J.P. Espinós, A.R. González-Elipe, Surf. Sci. 366, 545 (1996)[Crossref]
  • [18] H. Dosch, Critical Phenomena at Surfaces and Interfaces (Evanescent X-ray and Neutron Scattering), Springer Tracts in Modern Physics Vol. 126 (Springer, Berlin, 1992)
  • [19] K.W. Evans-Lutterodt, M.T. Tang, J. Appl. Cryst. 28, 318 (1995)[Crossref]
  • [20] R. Feidenhans’l, Surf. Sci. Rep. 10, 105 (1989)[Crossref]
  • [21] J. Als-Nielsen, D. McMorrow, Elements of Modern X-ray Physics (Wiley, New York, 2001)
  • [22] D.W. Breiby, O. Bunk, J.W. Andreasen, H.T. Lemke, M.M. Nielsen, J. Appl. Cryst. 41, 262 (2008)[Crossref]
  • [23] M.F. Toney, S. Brennan, J. Appl. Phys. 65, 4763 (1989)[Crossref]
  • [24] B.L. Henke, E.M. Gullikson, J.C. Davis, Atomic Data and Nuclear Data Tables 54,2, 181 (1993)[Crossref]
  • [25] M.C. Corbeil, Stud. Conserv. 43, 265 (1998)[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.