PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2008 | 6 | 4 | 555-561
Article title

Density and temperature effect on hydrogen-bonded clusters in water - MD simulation study

Content
Title variants
Languages of publication
EN
Abstracts
EN
Molecular dynamics NVE simulations have been performed for five thermodynamic states of water including ambient, sub-and supercritical conditions. Clustering of molecules via hydrogen bonding interaction has been studied with respect to the increasing temperature and decreasing density to examine the relationship between the extent of hydrogen bonding and macroscopic properties. Calculations confirmed decrease of the average number of H-bonds per molecule and of cluster-size with increasing temperature and decreasing density. In the sub-and supercritical region studied, linear correlations between several physical quantities (density, viscosity, static dielectric constant) and the total engagement of molecules in clusters of size k > 4, Pk>4, have been found. In that region there was a linear relationship between Pk>4 and the average number of H-bonds per water molecule. The structural heterogeneity resulting from hydrogen bonding interactions in low-density supercritical water has been also discussed. [...]
Publisher
Journal
Year
Volume
6
Issue
4
Pages
555-561
Physical description
Dates
published
1 - 12 - 2008
online
28 - 10 - 2008
References
  • [1] E. Kiran, P. G. Debenedetti, C. J. Peters (Eds); Supercritical Fluids. Fundamentals and Applications, NATO Science Series E: Applied Science - vol. 366 (Kluwer Academic Publishers, 2000)
  • [2] D. A. Palmer, R. Fernandez-Prini, A. H. Harvey (Eds); Aqueous Systems at Elevated Temperatures and Pressures (Elsevier, 2004)
  • [3] A. Kruse, E. Dinjus, J. Supercritical Fluids, 39, 362 (2007) http://dx.doi.org/10.1016/j.supflu.2006.03.016[Crossref]
  • [4] A. G. Kalinichev, In: R. T. Cygan, J. D. Kubicki (Eds); Reviews in Mineralogy and Geochemistry, vol. 42 (Mineralogical Society of America, Washington D. C., 2001) 83
  • [5] M.-C. Bellissent-Funel, J. Mol. Liq. 90, 313 (2001) http://dx.doi.org/10.1016/S0167-7322(01)00135-0[Crossref]
  • [6] R. D. Mountain, J. Chem. Phys. 110, 2109 (1999) http://dx.doi.org/10.1063/1.477853[Crossref]
  • [7] D. Swiatla-Wojcik, Chem. Phys. 342, 260 (2007)
  • [8] P. Bopp, G. Jancso, K. Heinzinger, Chem. Phys. Lett. 98, 129 (1983) http://dx.doi.org/10.1016/0009-2614(83)87112-7[Crossref]
  • [9] F. H. Stillinger, A. Rahman, J. Chem. Phys. 68, 666 (1978) http://dx.doi.org/10.1063/1.435738[Crossref]
  • [10] B. Guillot, Y. Guissani, J. Chem. Phys. 108, 10162 (1998) http://dx.doi.org/10.1063/1.476475[Crossref]
  • [11] H. J. C. Berendsen, J. R. Grigera, T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987) http://dx.doi.org/10.1021/j100308a038[Crossref]
  • [12] I. Ruff, D. J. Diestler, J. Chem. Phys. 93, 2032 (1990) http://dx.doi.org/10.1063/1.459080[Crossref]
  • [13] M. P. Allen, D. J. Tildesley; Computer Simulation of Liquids (Oxford University Press, Oxford, 1987)
  • [14] T. Head-Gordon, G. Hura, Chem. Rev. 102, 2651 (2002) http://dx.doi.org/10.1021/cr0006831[Crossref]
  • [15] Ph. Wernet, D. Testemale, J.-L. Hazemann, R. Argoud, P. Glatzel, L. G. M. Pettersson, A. Nilsson, U. Bergmann, J. Chem. Phys. 123, 154503 (2005)
  • [16] N. Matubayasi, C. Wakai, M. Nakahara, J. Chem. Phys. 107, 9133 (1997) http://dx.doi.org/10.1063/1.475205[Crossref]
  • [17] T. Yamaguchi, J. Mol. Liq. 78, 43 (1998) http://dx.doi.org/10.1016/S0167-7322(98)00083-X[Crossref]
  • [18] R. L. Blumberg, H. E. Stanley, A. Geiger, P. Mausbach, J. Chem. Phys. 80, 5230 (1984) http://dx.doi.org/10.1063/1.446593[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11532-008-0059-7
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.