PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2008 | 6 | 2 | 208-215
Article title

Rime samples characterization and comparison using classical and fuzzy principal components analysis

Content
Title variants
Languages of publication
EN
Abstracts
EN
The main objective of this paper is to introduce principal component analysis and two robust fuzzy principal component algorithms as useful tools in characterizing and comparing rime samples collected in different locations in Poland (2004–2007). The efficiency of the applied procedures was illustrated on a data set containing 108 rime samples and concentration of anions, cations, HCHO, as well as pH and conductivity. The fuzzy principal component algorithms achieved better results mainly because they are more compressible than classical PCA and very robust to outliers. For example, a three component model, fuzzy principal component analysis-first component (FPCA-1) accounts for 62.37% of the total variance and fuzzy principal component analysis-orthogonal (FPCA-o) 90.11%; PCA accounts only for 58.30%. The first two principal components explain 51.41% of the total variance in the case of FPCA-1 and 79.59% in the case of FPCA-o as compared to only 47.55% for PCA. As a direct consequence, PCA showed only a partial differentiation of rime samples onto the plane or in the space described by different combination of two or three principal components, whereas a much sharper differentiation of the samples, regarding their origin and location, is observed when FPCAs are applied. [...]
Keywords
EN
Publisher

Journal
Year
Volume
6
Issue
2
Pages
208-215
Physical description
Dates
published
1 - 6 - 2008
online
17 - 4 - 2008
Contributors
  • Department of Analytical Chemistry, Chemical Faculty, Gdansk University of Technology (GUT), 80-952, Gdańsk, Poland, skakama@chem.pg.gda.pl
author
  • Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 400028, Cluj-Napoca, Romania
  • Department of Analytical Chemistry, Chemical Faculty, Gdansk University of Technology (GUT), 80-952, Gdańsk, Poland
author
  • Department of Meteorology and Climatology, Institute of Geography and Regional Development, University of Wroclaw, PL-51670, Wrocław, Poland
  • Department of Meteorology and Climatology, Institute of Geography and Regional Development, University of Wroclaw, PL-51670, Wrocław, Poland
  • Department of Analytical Chemistry, Chemical Faculty, Gdansk University of Technology (GUT), 80-952, Gdańsk, Poland
References
  • [1] S. Baranowski, J. Liebersbach, J. Glaciol. 19, 489 (1978)
  • [2] H. Lorenc, Atlas klimatu Polski (IMGW, Warszawa 2005) (In Polish)
  • [3] M. Sobik, Alpex Regional Bulletin. Swiss Meteorological Institute 17, 26 (1991)
  • [4] M. Błaś, M. Sobik, Natural and Human Impact on Pollutant Deposition in Mountain Ecosystems with the Sudetes as an Example. In: J.L. Pyka, M. Dubicka, A. Szczepankiewicz-Szmyrka, M. Sobik, M. Błaś (eds), Man and Climate in the 20th Century. Acta UW rat 2542, Stu Geo., 75, 411 (2003)
  • [5] M. Mellinger, Chemometr. Intell. Lab. Syst. 2, 29 (1987) http://dx.doi.org/10.1016/0169-7439(87)80083-7[Crossref]
  • [6] S. Wold, Chemometr. Intell. Lab. Syst. 2, 37 (1987) http://dx.doi.org/10.1016/0169-7439(87)80084-9[Crossref]
  • [7] J.W. Einax, H.W. Zwanziger, S. Geiß, Chemometrics in Environmental Analysis (John Wiley & Sons Ltd, Chichester 1997)
  • [8] M. Otto, Chemometrics: Statistics and Computer Application in Analytical Chemistry (Wiley-VCH, Weinheim 1999)
  • [9] K.H. Esbensen, Multivariate Data Analysis in Practice (CAMO, Oslo 2002)
  • [10] R.G. Brereton, Applied Chemometrics for Scientist (John Wiley & Sons, Chichester 2007)
  • [11] K. Kafadar, Chemometr. Intell. Lab. Syst. 60, 127 (2002) http://dx.doi.org/10.1016/S0169-7439(01)00190-3[Crossref]
  • [12] M. Hubert, P.J. Rousseeuw, S. Verboven, Chemometr. Intell. Lab. Syst. 60, 101 (2002) http://dx.doi.org/10.1016/S0169-7439(01)00188-5[Crossref]
  • [13] M. Hubert, S. Engelen, Bioinformatics 20, 1728 (2004) http://dx.doi.org/10.1093/bioinformatics/bth158[Crossref]
  • [14] L.A. Zadeh, Inf. Control. 8, 338 (1965) http://dx.doi.org/10.1016/S0019-9958(65)90241-X[Crossref]
  • [15] J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms. (Plenum Press, New York, 1987)
  • [16] J.C. Bezdek, R. Ehrlich, W. Full, Comput Geosci 10, 191 (1984) http://dx.doi.org/10.1016/0098-3004(84)90020-7[Crossref]
  • [17] H.F. Pop, D. Dumitrescu, C. Sârbu, Anal. Chim. Acta 310, 269 (1995) http://dx.doi.org/10.1016/0003-2670(95)00129-N[Crossref]
  • [18] C. Sârbu, K. Zehl, J.W. Einax, Chemometr. Intell. Lab. Syst. 86, 121 (2007) http://dx.doi.org/10.1016/j.chemolab.2006.08.015[Crossref]
  • [19] H.F. Pop, C. Sârbu, Anal. Chem. 68, 771 (1996) http://dx.doi.org/10.1021/ac950549u[Crossref]
  • [20] C. Sârbu, J. AOAC Int., 83, 1463 (2000)
  • [21] C. Sârbu, H.F. Pop, Fuzzy Soft-Computing Methods and Their Applications in Chemistry. In: K.B. Lipkowitz, R. Larter, T.R. Cundari (Eds.), Reviews in Computational Chemistry, Wiley-VCH, 20, 249 (2004)
  • [22] C. Sârbu, H.F. Pop, Talanta 65, 1215 (2005) http://dx.doi.org/10.1016/j.talanta.2004.08.047[Crossref]
  • [23] K. Szczepaniak, C. Sârbu, A. Astel, E. Rainska, M. Biziuk, O. Culicov, M.V. Frontasyeva, P. Bode, Cent. Eur. J. Chem. 4, 29 (2006) http://dx.doi.org/10.1007/s11532-005-0003-z[Crossref]
  • [24] P. Simeonova, C. Sârbu, T. Spanos, V. Simeonov, S. Tsakovski, Cent. Eur. J. Chem. 4, 68 (2006) http://dx.doi.org/10.1007/s11532-005-0005-x[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11532-008-0023-6
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.