EN
trans-[Co(py)4Cl2]Cl·6H2O, mer-[Co(py)3Cl3] and mer-[Co(py)3(CO3)Cl] were studied by UV-Vis, far-IR and 1H, 13C, 15N NMR. The formation of Co-N bonds lead to variable in sign and magnitude changes of 1H NMR chemical shifts, heavily dependent on proton position, coordination sphere geometry and character of auxiliary ligands. 13C nuclei were deshielded upon Co(III) coordination, while 15N NMR studies exhibited ca. 85–110 ppm shielding effects (ca. 15–25 ppm more expressed for nitrogens trans to N than trans to Cl or O). 13C and 15N CPMAS spectra revealed a slight inequivalency of formally identical Co-py bonds in trans-[Co(py)4Cl2]Cl·6H2O and mer-[Co(py)3Cl3], suggesting for the latter complex an existence of distortion isomers. In chloroform, a spontaneous trans-[Co(py)4Cl2]Cl → mer-[Co(py)3Cl3] + py reaction was monitored by 1H NMR and UV-Vis. This process of py → Cl substitution allowed the design of a more convenient and efficient method of mer-[Co(py)3Cl3] preparation. [...]