Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2007 | 5 | 4 | 1124-1147

Article title

Rigorous modelling and optimization of hybrid separation processes based on pervaporation


Title variants

Languages of publication



Hybrid separation processes are becoming more and more important in the practice if membrane technologies are also involved. In this work, a systematic investigation is completed for three sequence alternatives of distillation and pervaporation. These are the following: pervaporation followed with distillation (PV+D), distillation followed with pervaporation (D+PV), two distillation columns and a pervaporation unit between them (D+PV+D). The hybrid separation process alternatives are evaluated with rigorous modelling tools, but first, a rigorous simulation algorithm is determined for the pervaporation. The three hybrid separation processes are rigorously modelled with CHEMCAD, and optimized with the dynamic programming optimization method for the case of the separation of ethanol-water mixture. The objective function is the total annual cost (TAC). The energy consumption is also investigated. The selection of the ethanol-water mixture has two motivations: (i) it is quite often studied and well known, and (ii) to make biofuel (ethanol) production more economical, membrane technologies might also be applied. The results are compared with each other and with the classical separation completed with heteroazeotropic distillation. The optimized TAC shows that the distillation column followed with pervaporation is the most economical hybrid separation process alternative. Its TAC is about 66% of that of the classical separation. [...]










Physical description


1 - 12 - 2007
1 - 12 - 2007


  • Department of Chemical and Environmental Process Engineering, Research Group of Technical Chemistry, Hungarian Academy of Sciences, Budapest University of Technology and Economics, Budapest, H-1521, Muegyetem rkp 3, Hungary
  • Department of Chemical and Environmental Process Engineering, Research Group of Technical Chemistry, Hungarian Academy of Sciences, Budapest University of Technology and Economics, Budapest, H-1521, Muegyetem rkp 3, Hungary
  • Department of Chemical and Environmental Process Engineering, Research Group of Technical Chemistry, Hungarian Academy of Sciences, Budapest University of Technology and Economics, Budapest, H-1521, Muegyetem rkp 3, Hungary


  • [1] P. Mizsey: “Waste reduction in the chemical industry: a two level problem”, J. Hazard Mater., Vol. 37, (1994), pp. 1–13. http://dx.doi.org/10.1016/0304-3894(94)85028-3[Crossref]
  • [2] V.V. Hoof, L.V. den Abeele, A. Buekenhoudt, C. Dotremont and R. Leysen: “Economic comparison between azeotropic distillation and different hybrid systems combining distillation with pervaporation for the dehydration of isopropanol”, Sep. Purif. Technol., Vol. 37, (2004), pp. 33–49. http://dx.doi.org/10.1016/j.seppur.2003.08.003[Crossref]
  • [3] F. Lipnizki, R.W. Field and Po-Kiong Ten: “Pervaporation-based hybrid process: a review of process design, application and economics”, J. Membrane Sci., Vol. 153, (1999), pp. 183–210. http://dx.doi.org/10.1016/S0376-7388(98)00253-1[Crossref]
  • [4] N. Wynn: “Pervaporation Comes of Age”, Chem. Eng. Prog., Vol. 97, (2001), pp. 66–72.
  • [5] U. Sander and P. Soukup: “Design and operation of a pervaporation plant for ethanol dehydration”, J. Membrane Sci., Vol. 36, (1988), pp. 463–475. http://dx.doi.org/10.1016/0376-7388(88)80036-X[Crossref]
  • [6] C.L. Hsueh, J.F. Kuo, Y.H. Huang, C.C. Wang and C.Y. Chen: “Separation of ethanol-water solution by poly(acrylonitrile-co-acrilyc acid) membranes”, Sep. Purif. Technol., Vol. 41, (2005), pp. 39–47. http://dx.doi.org/10.1016/j.seppur.2004.04.002[Crossref]
  • [7] D. Van Baelen, B. Van der Bruggen, K. Van den Dungen, J. Degreve and C. Vandecasteele: “Pervaporation of water-alcohol mixtures and acetic acid-water mixtures”, Chem. Eng. Sci., Vol. 60, (2005), pp. 1583–1590. http://dx.doi.org/10.1016/j.ces.2004.10.030[Crossref]
  • [8] K. Koczka, J. Manczinger, P. Mizsey and Z. Fonyo: “Novel hybrid separation processes based on pervaporation for THF recovery”, Chem. Eng. Process, Vol 46, (2007), pp. 239–246. http://dx.doi.org/10.1016/j.cep.2006.05.016[Crossref][WoS]
  • [9] R.W. Baker: Membrane Technology and Applications, Membrane Technology and Research, 2nd ed., Wiley, England, 2004.
  • [10] O. Trifunović, F. Lipnizki and G. Trägardh: “The influence of process parameters on aroma recovery by hydrophobic pervaporation”, Desalination, Vol. 189, (2006), pp. 1–12. http://dx.doi.org/10.1016/j.desal.2005.03.096[Crossref]
  • [11] M.-C. Belis-Bergouignan, V. Oltra and M.S. Jean: “Trajektories towards clean technology: example of volatile organic compound emission reductions”, Ecol. Econ., Vol. 48, (2004), pp. 201–220. http://dx.doi.org/10.1016/j.ecolecon.2003.09.010[Crossref]
  • [12] I. Blume, J. G. Wijmans and R. W. Baker: “The Separation of Dissolved Organics from Water by Pervaporation”, J. Membrane. Sci., Vol. 49, (1990), pp. 253–286. http://dx.doi.org/10.1016/S0376-7388(00)80643-2[Crossref]
  • [13] A. L. Athayde, R. W. Baker, R. Daniels, M.H. Le and J.H. Ly: “Pervaporation for Wastewater Treatment”, Chemtech, Vol. 1, (1997), pp. 34–39.
  • [14] G. Cox and R.W. Baker: “Pervaporation for the Treatment of Small Volume VOC contaminated Waste Water Streams”, Industial Wastewater, Vol. 6, (1998), pp. 35–38.
  • [15] B.V. der Bruggen, E. Curcio and E. Drioli: “Process intensification in the textile industry: the role of membrane technology”, J. Environ. Manage, Vol. 73, (2004), pp. 267–274. http://dx.doi.org/10.1016/j.jenvman.2004.07.007[Crossref]
  • [16] J. Marriott and E. Sorensen: “The optimal design of membrane systems”, Chem. Eng. Sci., Vol. 58, (2003), pp. 4991–5004. http://dx.doi.org/10.1016/j.ces.2003.07.011[Crossref]
  • [17] J. Marriott and E. Sorensen: “A general approach to modeling membrane modules”, Chem. Eng. Sci., Vol. 58, (2003), pp. 4975–4990. http://dx.doi.org/10.1016/j.ces.2003.07.005[Crossref]
  • [18] A.M. Eliceche, M.C. Daviou, P.M. Hoch and I.O. Uribe: “Optimization of azeotropic distillation columns combined with pervaporation membranes”, Comput. Chem. Eng., Vol. 26, (2002), pp. 563–573. http://dx.doi.org/10.1016/S0098-1354(01)00775-X[Crossref]
  • [19] P. D. Chapman, X. Tan, A.G. Livingston, K. Li and T. Oliveira: “Dehydration of tetrahydrofuran by pervaporation using composite membrane”, J. Membrane Sci., Vol. 268, (2006), pp. 13–19. http://dx.doi.org/10.1016/j.memsci.2005.06.003[Crossref]
  • [20] A. Fahmy, D. Mewes and K. Ohlrogge: “Absorption-assisted pervaporation for solvent dehydration”, Desalination, Vol. 149, (2002), pp. 9–14. http://dx.doi.org/10.1016/S0011-9164(02)00684-7[Crossref]
  • [21] M. R. Shah, R.D. Noble and D.E. Clough: “Pervaporation-air stripping hybrid process for removal of VOCs from groundwater”, J. Membrane Sci., Vol. 241, (2004), pp. 257–263. http://dx.doi.org/10.1016/j.memsci.2004.04.032[Crossref]
  • [22] R. Rautenbach, C. Herion and U. Meyer-Blumenroth: “Engineering aspects of pervaporation: calculation of transport resistances, module optimization and plant design in Pervaporation membrane separation processes”, edited by R.Y.M. Huang, Membrane Science and Technology Series, 1st ed, Elsevier, New York, 1991, pp. 181–224.
  • [23] P. Schaetzel, C. Vauclair, G. Luo and Q.T. Nguyen: “The solution-diffusion model order of magnitude calculation of coupling between the flux in pervaporation”, J. Membrane Sci., Vol 191, (2001), pp. 103–108. http://dx.doi.org/10.1016/S0376-7388(01)00457-4[Crossref]
  • [24] J.M. Neto and M.N. Pinho: “Mass transfer modeling for solvent dehydration by pervaporation”, Sep. Purif. Technol., Vol. 18, (2000), pp. 151–161. http://dx.doi.org/10.1016/S1383-5866(99)00061-1[Crossref]
  • [25] A. Lovasz, P. Mizsey and Z. Fonyo: “Methodology for parameter estimation of modelling of pervaporation in flowsheeting environment”, Chem. Eng. J., Vol. 133, (2007), pp. 219–227. http://dx.doi.org/10.1016/j.cej.2007.01.038[WoS][Crossref]
  • [26] J. Neel: “Introduction to pervaporation in Pervaporation membrane separation processes”, edited by R.Y.M. Huang, Membrane Science and Technology Series, 1 Elsevier, New York, 1991, pp. 23–31.
  • [27] E. Nagy: “Binary, coupled mass transfer with variable diffusivity through cylindrical dense membrane”, J. Membrane Sci., Vol. 274, (2006), pp. 159–168. http://dx.doi.org/10.1016/j.memsci.2005.08.007[Crossref]
  • [28] P. Mizsey, K. Koczka, A. Deak and Z. Fonyo: “Simulation of pervaporation with the “solution-diffusion” model”, Hungarian Chemical Journal, Vol. 60, (2005), pp. 239–242 (in Hungarian).
  • [29] R.D. Noble: Membrane Separation Technology, Principles and Applications, Membrane Science and Technology Series, 2nd ed., Elsevier, New York, 1995.
  • [30] A. Jonquieres, R. Clément, P. Lochon, J. Néel, M. Dresch and B. Chrétien: “Industrial state-of-the-art of pervaporation and vapour permeation in the western countries”, J. Membrane Sci., Vol 206, (2002), pp. 87–117. http://dx.doi.org/10.1016/S0376-7388(01)00768-2[Crossref]
  • [31] T.F. Edgar, D.M. Himmelblau and L.S. Lasdon: Optimization of Chemical Process, New York, McGraw-Hill, 2002.
  • [32] J.M. Douglas: Conceptual Design of Chemical Process, McGraw Hill Chemical Engineering Series, New York 1988.
  • [33] Personal communications, Sulzer Chemtech 2004
  • [34] E. Márki, B. Lenti, Gy. Vatai and E. Békássy-Molnár: “Clean technology for acetone absorption and recovery”, Sep. Purif. Technol., Vol 22–23, (2001), pp. 377–382. http://dx.doi.org/10.1016/S1383-5866(00)00121-0[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.