Preferences help
enabled [disable] Abstract
Number of results
2007 | 5 | 4 | 1148-1157
Article title

ICP slurry introduction for simple and rapid determination of Pb, Mg and Ca in plant roots

Title variants
Languages of publication
Pb, Mg and Ca were simultaneously determined in plant roots by slurry introduction into inductively coupled plasma optical emission spectrometry (SS-ICP-OES). Slurries were prepared in 0.5% or 5% (v/v) HNO3 with 0.5, or 5% (v/v) Triton X-100. Omission of the Triton X-100 improved results. Compared with wet ashing of the root sample followed by ICP-OES, ICP-MS and FAAS, the method offers: comparable results, simplification of sample preparation, less sample contamination, and reduction in the use of dangerous and corrosive reagents. The precisions varied: 1.7% for Mg, 2.8% for Ca and 4.3% for Pb, and were not significantly different (95% confidence level) from those of conventional analysis. [...]
Physical description
1 - 12 - 2007
3 - 7 - 2007
  • [1] Q.Z. Bian, P. Jacob, H. Bernard and K. Niemax: “Online flow digestion of biological and environmental samples for inductively coupled plasma-optical emission spectroscopy (ICP-OES)”, Anal. Chim. Acta, Vol. 583, (2005), pp. 323–329.[Crossref]
  • [2] Z. Wang, Z. Ni, D. Qiu, G. Tao and P. Yang: “Characterization of stability of ceramic suspension for slurry introduction in inductively coupled plasma optical emission spectrometry and application to aluminium nitride analysis”, J. Anal. Atom. Spectrom., Vol. 20, (2005), pp. 315–319.[Crossref]
  • [3] J.G. Parsons, J.L. Gardea-Torresdey, J.R. Peralta-Videa, K.J. Tiemann, E. Gomez, L. Gugliotta and M. Durate-Gardea: “A Statistical Comparison of Platinum Plant Digestion Data Obtained From GFAAS and ICP-OES”, Atom. Spectrosc., Vol. 24, (2003), pp. 89–92.
  • [4] N.S. Mokgalaka, T. Wondimu and R.I. McCrindle: “Reductive separation and slurry nebulization of converter matte for ICP-OES analysis of some platinum group metals and gold”, J. Anal. Atom. Spectrom., Vol. 19, (2004), pp. 1493–1497.[Crossref]
  • [5] E.J. dos Santos, A.B. Herrmann, V.L.A. Frescura and A.J. Curtius: “Simultaneous determination of As, Hg, Sb, Se and Sn in sediments by slurry sampling axial view inductively coupled plasma optical emission spectrometry using on-line chemical vapor generation with internal standardization”, J. Anal. Atom. Spectrom., Vol. 20, (2005), pp. 538–543.[Crossref]
  • [6] M.S. Epstein, G.R. Carnick and W. Slavin: “Abstract-EMBASE”, Anal. Chem., Vol. 61, (1989), p. 1414.[Crossref]
  • [7] P.J. McKinstry, H.E. Indyk and N.D. Kim: “The determination of major and minor elements in milk and infant formula by slurry nebulisation and inductively coupled plasma-optical emission spectrometry (ICP-OES)”, Food Chem., Vol. 65, (1999), pp. 245–252.[Crossref]
  • [8] R. Bou, F. Guardiola, A. Padro, E. Pelfort and R. Codony: “Validation of mineralization procedures for the determination of selenium, zinc, iron and copper in chicken meat and feed samples by ICP-AES and ICP-MS”, J. Anal. Atom. Spectrom., Vol. 19, (2004), pp. 1361–1369.[Crossref]
  • [9] R. Araujo, F. Dias, S. Macedo, W. Santos and S. Ferreira: “Method development for the determination of manganese in wheat flour by slurry sampling flame atomic absorption spectrometry”, Food Chem., Vol. 101, (2007), 397–400.[Crossref]
  • [10] N.S. Mokgalaka, R.I. McCrindle and B.M. Botha: “Multielement analysis of tea leaves by inductively coupled plasma optical emission spectrometry using slurry nebulization”, J. Anal. Atom. Spectrom., Vol. 19, (2004), pp. 1375–1378.[Crossref]
  • [11] J. Mierzwa, Y.C. Sun, Y.T. Chung and M.H. Yang: “Comparative determination of Ba, Cu, Fe, Pb and Zn in tea leaves by slurry sampling electrothermal atomic absorption and liquid sampling inductively coupled plasma atomic emission spectrometry”, Talanta, Vol. 47, (1998), pp. 1263–1270[Crossref]
  • [12] M.A. Herrador and A.G. Gonzalez: “Pattern recognition procedures for differentiation of Green, Black and Oolong teas according to their metal content from inductively coupled plasma atomic emission spectrometry”, Talanta, Vol. 53, (2001), pp. 1249–1257.[Crossref]
  • [13] N. Carrion, A. Fernandez, E.J. Eljuri, M. Murillo and M. Franceschetto: “Trace metal analysis in plant tissue by inductively coupled plasma-atomic emission spectrometry with slurry sample introduction”, Atomic Spectrosc., Vol. 12, (1991), pp. 162–168.
  • [14] C.K. Manickum, A.A. Verbeek: “Determination of Aluminum, Barium, Magnesium and Manganese in Tea Leaf by Slurry Nebulization Inductively Coupled Plasma Atomic Emission Spectrometry”, J. Anal. Atom. Spectrom., Vol. 9, (1994), p. 227.[Crossref]
  • [15] K.E. Jarvis: “Role of slurry nebulization for the analysis of geological samples by inductively coupled plasma mass spectroscopy”, Chem. Geol., Vol. 95, (1992), 73–84.[Crossref]
  • [16] A. Krejcova, D. Kahoun, T. Cernohorsky and M. Pouzar: “Determination of macro and trace element in multivitamins preparations by inductively coupled plasma optical emission spectrometry with slurry sample introduction”, Food Chem., Vol. 98, (2006), 171–178.[Crossref]
  • [17] L. Ebdon, M. Foulkes and K. Sutton: “Slurry nebulisation in plasmas”, J Anal. At. Spectrom., Vol. 12, (1997), 213–229.[Crossref]
  • [18] W.A.H. Van Borm, J.A.C. Broekaert, R. Klockenkamper, P. Tschopel and F.C. Adams: “Aerosol sizing and transport studies with slurry nebulization in inductively coupled plasma spectrometry”, Spectrochim. Acta. B, Vol. 46, (1991), pp. 1033–1049.[Crossref]
  • [19] C.S. Silva, T. Blanco and A.J. Nobrega: “Analysis of cement slurries by inductively coupled plasma optical emission spectrometry with axial viewing”, Spectrochim. Acta B, Vol. 57, (2002), 29–33.[Crossref]
  • [20] A.N. Anthemidis, V.G. Pliatsika: “On-line formation and nebulization for inductively coupled plasma atomic emission spectrometry. Multi-element analysis of cocoa and coffee powder sample”, J Anal. Atom. Spectrom., Vol. 20, (2005), 1280–1286.[Crossref]
  • [21] D. Barałkiewicz: “Fast determination of lead in lake sediment samples using electrothermal atomic absorption spectrometry with slurry samples introduction”, Talanta, Vol. 56, (2002), 105–114.[Crossref]
  • [22] A. Piechalak, B. Tomaszewska and D. Bara’kiewicz: “Enhancing phytoremediative ability of Pisum sativum by EDTA application”, Phytochemistry, Vol. 64, (2003), pp. 1239–1251.[Crossref]
  • [23] D. M. Antosiewicz: “Study of calcium-dependent lead-tolerance in plants differing in their level of Ca-deficiency tolerance”, Environ. Pollut., Vol. 134, (2005), pp. 23–34.[Crossref]
  • [24] M.J. Cal-Prieta, A. Carlosena, S. Andrede, S. Muniategui, P. Lopez-Mahia, E. Fernandez and D. Prada: “Development of an analytical scheme for the direct determination of antimony in geological materials by automated ultrasonic slurry sampling-ETAAS”, J. Anal. Atom. Spectrom., Vol. 14, (1999), pp. 703–710.[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.