Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2007 | 5 | 3 | 898-911

Article title

Voltammetric and potentiometric studies of some sulpha drug-Schiff base compounds and their metal complexes

Content

Title variants

Languages of publication

EN

Abstracts

EN
The electrochemical behavior of some sulpha drug-Schiff bases at a mercury electrode was examined in the Britton-Robinson universal buffer of various pH values (2.5–11.7) containing 20% v/v) of ethanol using DC-polarography, cyclic voltammetry and controlled-potential electrolysis. The DC-polarograms and cyclic voltammograms of the examined compounds exhibited a single, 2-electron, irreversible, diffusion-controlled cathodic step within the entire pH range which is attributed to the reduction of the azomethine group-CH=N- to -CH2-NH-. The symmetry transfer coefficient (α) of the electrode reaction and the diffusion coefficient (D 0) of the reactant species were determined. The electrode reaction pathway of the compounds at the mercury electrode was suggested to follow the sequence: H+, e−, e−, H+. The dissociation constant of the sulpha drug-Schiff bases, the stability constant and stoichiometry of their complexes with various divalent transition metal ions (Mn2+, Co2+, Ni2+, Cu2+ and Zn2+) were determined potentiometrically at room temperature. [...]

Publisher

Journal

Year

Volume

5

Issue

3

Pages

898-911

Physical description

Dates

published
1 - 9 - 2007
online
1 - 9 - 2007

Contributors

author
  • Electrochemistry research unit, Chemistry Department, Faculty of Science, Tanta University, 31527, Tanta, Egypt
author
  • Chemistry Department, Faculty of Science, Benha University, 13518, Benha, Egypt
author
  • Electrochemistry research unit, Chemistry Department, Faculty of Science, Tanta University, 31527, Tanta, Egypt
author
  • Electrochemistry research unit, Chemistry Department, Faculty of Science, Tanta University, 31527, Tanta, Egypt
author
  • Electrochemistry research unit, Chemistry Department, Faculty of Science, Tanta University, 31527, Tanta, Egypt

References

  • [1] A. Korolkovas: Essentials of Medical Chemistry, Wiley Interscience Publication, New York. 1988.
  • [2] P.K. Panchal, P.B. Pansuriya and M.N. Patel: “In-vitro biological evaluation of some ONS and NS donor Schiff’s bases and their metal complexes”, J. Enzym Inhib. Med. Ch., Vol. 21, (2006), pp. 453–458. http://dx.doi.org/10.1080/14756360600628551[Crossref]
  • [3] G.G. Mohamed, M.M. Omar and A.M. Hindy: “Metal complexes of Schiff bases: Preparation, characterization and biological activity”, Turk. J. Chem., Vol. 30, (2006), pp. 361–382.
  • [4] Z.H. Chohan, H. Pervez, A. Rauf, K.M. Khan and C.T. Supuran: “Antibacterial cobalt (II), copper (II), nickel (II) and zinc (II) complexes of mercaptothiadiazolederived furanyl, thienyl, pyrrolyl, saclicylyl and pyridinyl Schiff bases”, J. Enzym Inhib. Med. Ch., Vol. 21, (2006), pp. 193–201. http://dx.doi.org/10.1080/14756360500397505[Crossref]
  • [5] P.K. Panchal, H.M. Parekh, P.B. Pansuriya and M.N. Patel: “Bactericidal activity of different oxovanadium (IV) complexes with Schiff bases and application of chelation theory”, J. Enzym Inhib. Med. Ch., Vol. 21, (2006), pp. 203–209. http://dx.doi.org/10.1080/14756360500535229[Crossref]
  • [6] T.M.A. Ismail: “Synthesis, characterization and biological activities of mononuclear and binuclear Fe (III) complexes with some symmetric and un-symmetric Schiff-base ligands”, J. Coord. Chem., Vol. 59, (2006), pp. 255–270. http://dx.doi.org/10.1080/00958970500095563[Crossref]
  • [7] H.M. Parekh, P.B. Pansuriya and M.N. Patel: “Characterization and antifungal study of genuine oxovanadium (IV) mixed-ligand complexes with Schiff bases”, Pol. J. Chem., Vol. 79, (2005), pp. 1834–1851.
  • [8] H. Ashassi-Sorkhabi, B. Shabani, B. Aligholipour and D. Seifzadeh: “The effect of some Schiff bases on the corrosion of aluminum in hydrochloric acid solution”, App. Surf. Sci., Vol. 252, (2006), pp. 4039–4047. http://dx.doi.org/10.1016/j.apsusc.2005.02.148[Crossref]
  • [9] M. Ehteshamzade, T. Shahrabi and M.G. Hosseini: “Inhibition of copper corrosion by self-assembled films of new Schiff bases and their modification with alkanethiols in aqueous medium”, App. Surf. Sci., Vol. 252, (2006), pp. 2949–2959. http://dx.doi.org/10.1016/j.apsusc.2005.05.003[Crossref]
  • [10] A. Dadgarnezhad, I. Sheikhshoaie and F. Baghaei: “Corrosion inhibitory of a new synthetic symmetrical Schiff-base on mild steel in acid media”, Asian J. Chem., Vol. 16, (2004), pp. 1109–1118.
  • [11] H. Shokry, M. Yuasa, I. Sekine, R.M. Issa, H.Y. El-Baradie and G.K. Gomma: “Corrosion inhibition of mild steel by Schiff base compounds in various aqueous solutions: Part 1”, Corros. Sci., Vol. 40, (1998), pp. 2173–2186. http://dx.doi.org/10.1016/S0010-938X(98)00102-4[Crossref]
  • [12] R.K. Dey, U. Jha, A.C. Singh, S. Samal and A.R. Ray: “Extraction of metal ions using chemically modified silica gel covalently bonded with 4,4′-diaminodiphenylether and 4,4′-diaminodiphenylsulfone-salicylaldehyde Schiff bases”, Anal. Sci., Vol. 22, (2006), pp. 1105–1110. http://dx.doi.org/10.2116/analsci.22.1105[Crossref]
  • [13] S.M. Sabry: “Application of 2-acetylbutyrolactone to spectrofluorinietry: Fluorescence properties of Schiff bases derived from 2-acetylbutyrolactone and spectrofluorimetric determination of primary amine-containing compounds”,J. Pharm. Boimed. Anal., Vol. 40, (2006), pp. 1057–1067. http://dx.doi.org/10.1016/j.jpba.2005.08.036[Crossref]
  • [14] M. Okochi, H. Ohta, T. Taguchi and T. Matsunaga: “Construction of an electrochemical probe for on chip type flow immunoassay”, Electrochim. Acta, Vol. 51, (2005), pp. 952–955. http://dx.doi.org/10.1016/j.electacta.2005.04.075[Crossref]
  • [15] A. Salimi, H. Mamkhezri and S. Mohebbi: “Electro less deposition of vanadium-Schiff base complex onto carbon nano-tubes modified glassy carbon electrode: Application to the low potential detection of iodate, periodate, bromate and nitrite”, Electrochem. Commun., Vol. 8, (2006), pp. 688–696. http://dx.doi.org/10.1016/j.elecom.2006.02.019[Crossref]
  • [16] M.B. Gholivand, F. Ahmadi and E. Rafiee: “A novel Al (III)-selective electrochemical sensor based on N,N′-bis(salicylidene)-1,2-phenylenediamine complexes”, J. Electroanal. Chem., Vol. 18, (2006), pp. 1620–1626.
  • [17] D.S. Kong, L.J. Wan, M.J. Han, G.B. Pan, S.B. Lei, C.L. Bai and S.H. Chen:“Self-assembled monolayer of a Schiff base on Au (III) surface: electrochemistry and electrochemical STM study”, Electrochim. Acta, Vol. 48, (2002), pp. 303–309. http://dx.doi.org/10.1016/S0013-4686(02)00667-9[Crossref]
  • [18] I.S. El-Hallag, G.B. El-Hefnawy, Y.I Moharram and E.M. Ghoneim: “Electrochemical studies of Schiff base compounds derived from antipyrine nucleus in ethanolic buffer solutions”, Can. J. Chem., Vol. 78, (2000), pp. 1170–1177. http://dx.doi.org/10.1139/cjc-78-9-1170[Crossref]
  • [19] A.A. Isse, A. Gennaro and E. Vianello: “Electrochemical reduction of Schiff base ligands H(2)salen and H(2)salophen”, Electrochim. Acta, Vol. 42, (1997), pp. 2065–2071. http://dx.doi.org/10.1016/S0013-4686(97)85482-5[Crossref]
  • [20] J.M. Sevilla, G. Cambron, T. Pineda and M. Blazquez: “Electroreduction of the Schiff-base of pyridoxal-5′-phosphate and hexylamine in dimethylformamide and methanol - effect of the self-protonation”, J. Electroanal. Chem., Vol. 381, (1995), pp. 179–183. http://dx.doi.org/10.1016/0022-0728(94)03695-Y[Crossref]
  • [21] T. Pineda, M. Blazquez, M. Dominguez and F. Garciablanco: “Electrochemical-behavior of the Schiff-base from pyridoxal-5′-phosphate and L-alanine”, J. Electroanal. Chem., Vol. 294, (1990), pp. 179–192. http://dx.doi.org/10.1016/0022-0728(90)87144-9[Crossref]
  • [22] E.C. Maurya and S. Rajput: “Oxovanadium (IV) complexes of bioinorganic and medicinal relevance: Synthesis, characterization and 3D molecular modeling and analysis of some oxovanadium (IV) complexes involving the O, N-donor environment of pyrazolone-based sulfa drug Schiff bases”, J. Mol. Struct., Vol. 794, (2006), pp. 24–34. http://dx.doi.org/10.1016/j.molstruc.2006.01.031[Crossref]
  • [23] H.T.S. Britton: Hydrogen ions, 4th ed., Chapman & Hall, London, 1952, p. 113.
  • [24] L. Meites: Polarographic Techniques, 2nd ed., Interscience Publisher, New York, 1965.
  • [25] P. Zuman: “Half a century of research using polarography”, Microchem. J., Vol. 57, (1997), pp. 4–51. http://dx.doi.org/10.1006/mchj.1997.1468[Crossref]
  • [26] P. Zuman “The Elucidation of Organic Electrode Processes”, Academic Press, New York, 1969.
  • [27] M.M. Ghoneim and M.A. Ashy: “Polarographic reduction of phenolphthalein, cresolphthalein, thymolphthalein and-naphtholphthalein in aqueous and nonaqueous ethanolic solutions”, Can. J. Chem., Vol. 57, (1979), pp. 1294–1298. http://dx.doi.org/10.1139/v79-212[Crossref]
  • [28] R. Greef, R. Peat, L.M. Peter, D. Pletcher and J. Robinson: Instrumental methods in electrochemistry, Ellis Horwood Limited, Chichester, 1985, pp. 185–189.
  • [29] M.T. Beck and I. Nagybal: Chemistry of Complex Equilibria, Wiley, New York, 1990.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11532-007-0035-7
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.