PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2007 | 5 | 3 | 635-671
Article title

Molecular dynamics simulations of potassium channels

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Despite the complexity of ion-channels, MD simulations based on realistic all-atom models have become a powerful technique for providing accurate descriptions of the structure and dynamics of these systems, complementing and reinforcing experimental work. Successful multidisciplinary collaborations, progress in the experimental determination of three-dimensional structures of membrane proteins together with new algorithms for molecular simulations and the increasing speed and availability of supercomputers, have made possible a considerable progress in this area of biophysics. This review aims at highlighting some of the work in the area of potassium channels and molecular dynamics simulations where numerous fundamental questions about the structure, function, folding and dynamics of these systems remain as yet unresolved challenges. [...]
Publisher
Journal
Year
Volume
5
Issue
3
Pages
635-671
Physical description
Dates
published
1 - 9 - 2007
online
20 - 5 - 2007
References
  • [1] E. Wallin and G. von Heijne: “Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms”, Protein. Sci., Vol 7, (1998), pp. 1029–1038. http://dx.doi.org/10.1002/pro.5560070420[Crossref]
  • [2] C.A. Hubner and T.J. Jentsch: “Ion channel diseases”, Hum. Mol. Genet., Vol 11, (2002), pp. 2435–2445. [Crossref]
  • [3] F.M. Ashcroft: Ion channels and disease, Academic Press, San Diego, 2000.
  • [4] D.M. Kullmann: “The neural channelophaties”, Brain, Vol. 125, (2002), pp. 1177–1195. [Crossref]
  • [5] E. Marban: “Cardiac channelopathies”, Nature, Vol. 415, (2002), pp. 213–218.
  • [6] J. Drews: “Drug discovery: A historical perspective”, Science, Vol. 287, (2000), pp. 1960–1964.
  • [7] A.L. Hopkins and C.R. Groom: “The druggable genome”, Nat. Rev. Drug Disc., Vol 1, (2003), pp. 727–730.
  • [8] C. Kambach: “Pipelines, robots, crystals and biology: What use high throughput solving structures of challenging targets?”, Curr. Protein Pept. Sc., Vol 8, (2007), pp. 205–217. [Crossref]
  • [9] C. Farre, S. Stoelzle, C. Haarmann, M. George, A. Bruggemann and N. Fertig: “Automated ion channel screening: Patch clamping made easy”, Expert Opin. Ther. Tar., Vol 11, (2007), pp. 557–565. [Crossref]
  • [10] A. Bruggemann, S. Stoelzle, M. George, J.C. Behrends and N. Fertig: “Microchip technology for automated and parallel patch-clamp recording”, Small, Vol. 2, (2006), pp. 840–846. [Crossref]
  • [11] C. Domene, P.J. Bond and M.S.P. Sansom: “Membrane protein simulations: Ion channels and bacterial outer membrane proteins”, Adv. Prot. Chem., Vol 66. (2003), pp. 159–193. [Crossref]
  • [12] P.C. Biggin and M.S.P. Sansom: “Simulation approaches to ion channel gating”, Biophys. J., Vol 82, (2002), p. 2530.
  • [13] W.L. Ash, T. Stockner, J.L. MacCallum and D.P. Tieleman: “Computer modeling of polyleucine-based coiled coil dimers in a realistic membrane environment: Insight into helix-helix interactions in membrane proteins”, Biochemistry, Vol. 43, (2004), pp. 9050–9060. [Crossref]
  • [14] B. Roux: “Theoretical and computational models of ion channels”, Curr. Opin. Struc. Biol., Vol 12, (2002), pp. 182–189. [Crossref]
  • [15] B. Roux and K. Schulten: “Computational studies of membrane channels”, Structure, Vol. 12, (2004), pp. 1343–1351. [Crossref]
  • [16] B. Roux, T. Allen, S. Berneche and W. Im: “Theoretical and computational models of biological ion channels”, Q. Rev. Biophys., Vol 37, (2004), pp. 15–103. [Crossref]
  • [17] B.O. Brandsdal, F. Osterberg, M. Almlof, I. Feierberg, V.B. Luzhkov and J. Aqvist: “Free energy calculations and ligand binding”, Adv. Protein Chem., Vol 66, (2003), pp. 123–158. [Crossref]
  • [18] S.H. Chung and S. Kuyucak: “Recent advances in ion channel research”, BBA-Biomembranes, Vol. 1565, (2002), pp. 267–286.
  • [19] B.L. de Groot and H. Grubmuller: “The dynamics and energetics of water permeation and proton exclusion in aquaporins”, Curr. Opin. Struc. Biol., Vol 15, (2005), pp. 176–183.
  • [20] J. Gumbart, Y. Wang, A. Aksimentiev, E. Tajkhorshid and K. Schulten: “Molecular dynamics simulations of proteins in lipid bilayers”, Curr. Opin. Struc. Biol., Vol 15, (2005), pp. 423–431. [Crossref]
  • [21] B. Roux: “Ion conduction and selectivity in k+ channels”, Annu. Rev. Biophys. Bio., Vol 34, (2005), pp. 153–171. [Crossref]
  • [22] O.S. Andersen, R.E. Koeppe and B. Roux: “Gramicidin channels”, IEEE Trans NanoBio, Vol. 4, (2005), pp. 10–20.
  • [23] W.L. Ash, M.R. Zlomislic, E.O. Oloo and D.P. Tieleman: “Computer simulations of membrane proteins”, BBA-Biomembranes, Vol. 1666, (2004), pp. 158–189.
  • [24] B. Corry and S.H. Chung: “Mechanisms of valence selectivity in biological ion channels”, Cell. Mol. Life Sci., Vol 63, (2006), pp. 301–315. [Crossref]
  • [25] S.H. Chung and B. Corry: “Three computational methods for studying permeation, selectivity and dynamics in biological ion channels”, Soft Matter., Vol 1, (2005), pp. 417–427. [Crossref]
  • [26] P.J. Bond and M.S.P. Sansom: “The simulation approach to bacterial outer membrane proteins”, Mol. Membr. Biol., Vol 21, (2004), pp. 151–161. [Crossref]
  • [27] A. Giorgetti and P. Carloni: “Molecular modeling of ion channels: Structural predictions”, Curr. Opin. Chem. Biol., Vol 7, (2003), pp. 150–156. [Crossref]
  • [28] B. Hille: Ionic channels of excitable membranes, 3rd Ed, Mass.: Sinauer Associates Inc., Sunderland, 2001.
  • [29] G. Yellen: “The bacterial k+ channel structure and its implications for neuronal channels”, Curr. Opin. Neurobiol., Vol 9, (1999), pp. 267–273. [Crossref]
  • [30] G. Yellen: “The voltage-gated potassium channels and their relatives”, Nature, Vol. 419, (2002), pp. 35–42.
  • [31] L. Heginbotham, Z. Lu, T. Abramsom and R. MacKinnon: “Mutations in the k+channel signature sequence”, Biophys. J., Vol 66, (1994), pp. 1061–1067. [Crossref]
  • [32] F.I. Valiyaveetil, M. Sekedat, R. MacKinnon and T.W. Muir: “Glycine as a d-amino acid surrogate in the k+-selectivity filter”, P. Natl. Acad. Sci. USA, Vol. 101, (2004), pp. 17045–17049. [Crossref]
  • [33] F.I. Valiyaveetil, M. Sekedat, T.W. Muir and R. MacKinnon: “Why are glycine residues absolutely conserved in the selectivity filter of potassium channels?” Biophys. J., Vol 86, (2004), pp. 130A–130A.
  • [34] M.J. Karplus and J.A. McCammon: “Molecular dynamics simulations of biomolecules”, Nat. Struct. Biol., Vol 9, (2002), pp. 646–652. [Crossref]
  • [35] B. Roux and S. Berneche: “On the potential functions used in molecular dynamics simulations of ion channels”, Biophys. J., Vol 82, (2002), pp. 1681–1684. [Crossref]
  • [36] W. Humphrey, A. Dalke and K. Schulten: “VMD: Visual molecular dynamics”, J. Mol. Graph. Model., Vol 14, (1996), pp. 33–38. [Crossref]
  • [37] M.S.P. Sansom: “Ion channels: Molecular modeling and simulation studies”, Methods Enzymol., Vol 293, (1998), pp. 647–693. [Crossref]
  • [38] M.S.P. Sansom, I.H. Shrivastava, K.M. Ranatunga and G.R. Smith: “Simulations of ion channels-watching ions and water move”, Trends Biochem. Sci., Vol 25, (2000), pp. 368–374. [Crossref]
  • [39] C. Domene, S. Haider and M.S.P. Sansom: “Ion channel structures: A review of recent progress”, Curr. Opin. Drug Discov. Dev., Vol 6, (2003), p. 611.
  • [40] C.E. Capener, H.J. Kim, T. Arinaminpathy and M.S.P. Sansom: “Ion channels: Structural bioinformatics and modelling”, Hum. Mol. Genet., Vol 11, (2002), pp. 2425–2433. [Crossref]
  • [41] P.C. Jordan: “Fifty years of progress in ion channel research”, IEEE Trans NanoBio, Vol. 4, (2005), pp. 3–9.
  • [42] W.F. van Gunsteren and H.J.C. Berendsen: Gromos-87 manual, Biomos BV, Groningen, 1987.
  • [43] W.L. Jorgensen and J. Tirado-Rives: “Development of the opls-aa force field for organic and biomolecular systems”, Abstr. Pap. Am. Chem. S., Vol 216, (1998), pp. 043–COMP.
  • [44] B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan and M. Karplus: “Charmm: A program for macromolecular energy, minimisation, and dynamics calculations”, J. Comp. Chem., Vol 4, (1983), pp. 187–217.
  • [45] D.A. Pearlman, D.A. Case, J.W. Caldwell, W.S. Ross, T.E. Cheatham, S. Debolt, D. Ferguson, G. Seibel and P. Kollman: “Amber, a package of computer-programs for applying molecular mechanics, normal-mode analysis, molecular-dynamics and freeenergy calculations to simulate the structural and energetic properties of molecules”, Comp. Phys. Comm., Vol 91, (1995), pp. 1–41. [Crossref]
  • [46] T.W. Allen, A. Bliznyuk, A.P. Rendell, S. Kuyucak and S.H. Chung: “The potassium channel: Structure, selectivity and diffusion”, J. Chem. Phys., Vol 112, (2000), pp. 8191–8204.
  • [47] V.B. Luzhkov and J. Aqvist: “A computational study of ion binding and protonation states in the kcsa potassium channel”, Biochim. Biophys. Acta, Vol. 1481, (2000), pp. 360–370.
  • [48] S. Berneche and B. Roux: “Energetics of ion conduction through the K+ channel”, Nature, Vol. 414, (2001), pp. 73–77.
  • [49] L. Guidoni and P. Carloni: “Potassium permeation through the KcsA channel: A density functional study”, Biochim. Biophys. Acta, Vol. 1563, (2002), pp. 1–6.
  • [50] D. Bucher, S. Raugei, L. Guidoni, M. Dal Peraro, U. Rothlisberger, P. Carloni and M.L. Klein: “Polarization effects and charge transfer in the kcsa potassium channel”, Biophys. Chem., Vol 124, (2006), pp. 292–301. [Crossref]
  • [51] A.A. Bliznyuk and A.P. Rendell: “Electronic effects in biomolecular simulations: Investigation of the KcsA potassium ion channel”, J. Phys. Chem. B, Vol. 108, (2004), pp. 13866–13873. [Crossref]
  • [52] P. Huetz, C. Boiteux, M. Compoint, C. Ramseyer and C. Girardet: “Incidence of partial charges on ion selectivity in potassium channels”, J. Chem. Phys., Vol 124, (2006).
  • [53] M. Compoint, C. Ramseyer and P. Huetz: “Ab initio investigation of the atomic charges in the kcsa channel selectivity filter”, Chem. Phys. Lett., Vol 397, (2004), pp. 510–515. [Crossref]
  • [54] S. Kraszewski, C. Boiteux, M. Langner and C. Ramseyer: “Insight into the origins of the barrier-less knock-on conduction in the KcsA channel: Molecular dynamics simulations and ab initio calculations”, Phys. Chem. Chem. Phys., Vol 9, (2007), pp. 1219–1225. [Crossref]
  • [55] M. Compoint, C. Boiteux, P. Huetz, C. Ramseyer and C. Girardet: “Role of water molecules in the KcsA protein channel by molecular dynamics calculations”, Phys. Chem. Chem. Phys., Vol 7, (2005), pp. 4138–4145. [Crossref]
  • [56] A.G. Lee: “How lipids affect the activities of integral membrane proteins”, BBA-Biomembranes, Vol. 1666, (2004), pp. 62–87.
  • [57] M.P. Allen and D.J. Tildesley: Computer simulation of liquids, Oxford University Press, Oxford, 1987.
  • [58] W. Weber, P.H. Hunenberger and J.A. McCammon: “Molecular dynamics simulations of a polyalanine octapeptide under ewald boundary conditions: Influence of artificial periodicity on peptide conformation”, J. Phys. Chem. B, Vol. 104, (2000), pp. 3668–3675. [Crossref]
  • [59] P.H. Hunenberger and J.A. McCammon: “Effect of artificial periodicity in simulations of biomolecules under ewald boundary conditions: A continuum electrostatics study”, Biophys. Chem., Vol 78, (1999), pp. 69–88. [Crossref]
  • [60] P.H. Hunenberger and J.A. McCammon: “Ewald artifacts in computer simulations of ionic solvation and ion-ion interaction: A continuum electrostatics study”, J. Chem. Phys., Vol 110, (1999), pp. 1856–1872.
  • [61] D. Bostick and M.L. Berkowitz: “The implementation of slab geometry for membrane-channel molecular dynamics simulations”, Biophys. J., Vol 85, (2003), pp. 97–107. [Crossref]
  • [62] R.H. Wood: “Continuum electrostatics in a computational universe with finite cutoff radii and periodic boundary-conditions-correction to computed free-energies of ionic solvation”, J. Chem. Phys., Vol 103, (1995), pp. 6177–6187.
  • [63] C.L. Brooks: “The influence of long-range force truncation on the thermodynamics of aqueous ionic-solutions”, J. Chem. Phys., Vol 86, (1987), pp. 5156–5162.
  • [64] T.P. Straatsma and H.J.C. Berendsen: “Free-energy of ionic hydration-analysis of a thermodynamic integration technique to evaluate free-energy differences by molecular-dynamics simulations”, J. Chem. Phys., Vol 89, (1988), pp. 5876–5886.
  • [65] M.A. Kastenholz and P.H. Hunenberger: “Influence of artificial periodicity and ionic strength in molecular dynamics simulations of charged biomolecules employing lattice-sum methods”, J. Phys. Chem. B, Vol. 108, (2004), pp. 774–788. [Crossref]
  • [66] M. Patra, M. Karttunen, M.T. Hyvonen, E. Falck, P. Lindqvist and I. Vattulainen: “Molecular dynamics simulations of lipid bilayers: Major artifacts due to truncating electrostatic interactions”, Biophys. J., Vol 84, (2003), pp. 3636–3645. [Crossref]
  • [67] M. Patra, M. Karttunen, M.T. Hyvonen, E. Falck and I. Vattulainen: “Lipid bilayers driven to a wrong lane in molecular dynamics simulations by subtle changes in longrange electrostatic interactions”, J. Phys. Chem. B, Vol. 108, (2004), pp. 4485–4494. [Crossref]
  • [68] C. Anezo, A.H. de Vries, H.D. Holtje, D.P. Tieleman and S.J. Marrink: “Methodological issues in lipid bilayer simulations”, J. Phys. Chem. B, Vol. 107, (2003), pp. 9424–9433. [Crossref]
  • [69] H. Schreiber and O. Steinhauser: “Cutoff size does strongly influence moleculardynamics results on solvated polypeptides”, Biochemistry, Vol. 31, (1992), pp. 5856–5860. [Crossref]
  • [70] H. Schreiber and O. Steinhauser: “Molecular-dynamics studies of solvated polypeptides-why the cutoff scheme does not work”, Chem. Phys., Vol 168, (1992), pp. 75–89. [Crossref]
  • [71] T. Rog, K. Murzyn and M. Pasenkiewicz-Gierula: “Molecular dynamics simulations of charged and neutral lipid bilayers: Treatment of electrostatic interactions”, Acta Biochim. Pol., Vol 50, (2003), pp. 789–798.
  • [72] M. Bergdorf, C. Peter and P.H. Hunenberger: “Influence of cut-off truncation and artificial periodicity of electrostatic interactions in molecular simulations of solvated ions: A continuum electrostatics study”, J. Chem. Phys., Vol 119, (2003), pp. 9129–9144.
  • [73] R. Walser, P.H. Hunenberger and W.F. van Gunsteren: “Comparison of different schemes to treat long-range electrostatic interactions in molecular dynamics simulations of a protein crystal”, Proteins, Vol. 43, (2001), pp. 509–519. [Crossref]
  • [74] M. Marchi and K. Akasaka: “Simulation of hydrated bpti at high pressure: Changes in hydrogen bonding and its relation with nmr experiments”, J. Phys. Chem. B, Vol. 105, (2001), pp. 711–714. [Crossref]
  • [75] B. Ensing, M. De Vivo, Z. Liu, P. Moore and M.L. Klein: “Metadynamics as a tool for exploring free energy landscapes of chemical reactions”, Accounts Chem. Res., Vol 39, (2006), pp. 73–81. [Crossref]
  • [76] A. Laio and M. Parrinello: “Escaping free-energy minima”, P. Natl. Acad. Sci. USA, Vol. 99, (2002), pp. 12562–12566. [Crossref]
  • [77] M. Ceccarelli, C. Danelon, A. Laio and M. Parrinello: “Microscopic mechanism of antibiotics translocation through a porin”, Biophys. J., Vol 87, (2004), pp. 58–64. [Crossref]
  • [78] F.L. Gervasio, M. Parrinello, M. Ceccarelli and M.L. Klein: “Exploring the gating mechanism in the clc chloride channel via metadynamics”, J. Mol. Biol., Vol 361, (2006), pp. 390–398. [Crossref]
  • [79] T. Vora, B. Corry and S.H. Chung: “Brownian dynamics investigation into the conductance state of the mscs channel crystal structure”, Biochim. Biophys. Acta, Vol. 1758, (2006), pp. 730–737.
  • [80] B. Corry, M. O’Mara and S.H. Chung: “Conduction mechanisms of chloride ions in clc-type channels”, Biophys. J., Vol 86, (2004), pp. 846–860. [Crossref]
  • [81] V. Krishnamurthy and S.H. Chung: “Adaptive brownian dynamics simulation for estimating potential mean force in ion channel permeation”, IEEE Trans NanoBio, Vol. 5, (2006), pp. 126–138.
  • [82] S. Furini, F. Zerbetto and S. Cavalcanti: “Application of the poisson-nernst-planck theory with space-dependent diffusion coefficients to kcsa”, Biophys. J., Vol 91, (2006), pp. 3162–3169. [Crossref]
  • [83] V. Jogini and B. Roux: “Electrostatics of the intracellular vestibule of k+ channels”, J. Mol. Biol., Vol 354, (2005), pp. 272–288. [Crossref]
  • [84] A.B. Mamonov, M.G. Kurnikova and R.D. Coalson: “Diffusion constant of k+ inside gramicidin a: A comparative study of four computational methods”, Biophys. Chem., Vol 124, (2006), pp. 268–278. [Crossref]
  • [85] R.D. Coalson and M.G. Kurnikova: “Poisson-nernst-planck theory approach to the calculation of current through biological ion channels”, IEEE Trans NanoBio, Vol. 4, (2005), pp. 81–93.
  • [86] D. Boda, M. Valisko, B. Eisenberg, W. Nonner, D. Henderson and D. Gillespie: “The effect of protein dielectric coefficient on the ionic selectivity of a calcium channel”, J. Chem. Phys., Vol 125, (2006), p. 34901.
  • [87] E. Perozo, D.M. Cortes and L.G. Cuello: “Three-dimensional architecture and gating mechanism of a K+ channel studied by epr spectroscopy”, Nat. Struct. Biol., Vol 5, (1998), pp. 459–469. [Crossref]
  • [88] E. Perozo, D.M. Cortes and L.G. Cuello: “Structural rearrangements underlying k+-channel activation gating”, Science, Vol. 285, (1999), pp. 73–78.
  • [89] E. Perozo, Y.S. Liu, P. Smopornpisut, D.M. Cortes and L.G. Cuello: “A structural perspective of activation gating in k+ channels”, J. Gen. Physiol., Vol 116, (2000), p. 5a.
  • [90] C.M. Armstrong: “Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axon”, J. Gen. Physiol., Vol 58, (1971), pp. 413–437. [Crossref]
  • [91] K. Khodakhah, A. Melishchuk and C.M. Armstrong: “Killing K channels with TEA+”, P. Natl. Acad. Sci. USA, Vol. 94, (1998), pp. 13335–13338.
  • [92] L. Heginbotham and R. MacKinnon: “The aromatic binding site for tetraethylammonium ion on potassium channels”, Neuron, Vol. 8, (1992), pp. 483–491. [Crossref]
  • [93] M. Zhou, J.H. Morais-Cabral, S. Mann and R. MacKinnon: “Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors”, Nature, Vol. 411, (2001), pp. 657–661.
  • [94] C. Domene, A. Grottesi and M.S. Sansom: “Filter flexibility and distortion in a bacterial inward rectifier K+ channel: simulation studies of KirBac1.1.”, Biophys. J., Vol 87(1), (2004), pp. 256–267.
  • [95] S.H. Chung, T.W. Allen and S. Kuyucak: “Conducting-state properties of the kcsa potassium channel from molecular and brownian dynamics simulations”, Biophys. J., Vol 82, (2002), pp. 628–645. [Crossref]
  • [96] R.J. Mashl, Y.Z. Tang, J. Schnitzer and E. Jakobsson: “Hierarchical approach to predicting permeation in ion channels”, Biophys. J., Vol 81, (2001), pp. 2473–2483. [Crossref]
  • [97] P.C. Biggin and M.S.P. Sansom: “Open-state models of a potassium channel”, Biophys. J., Vol 83, (2002), pp. 1867–1876. [Crossref]
  • [98] J. Youxing, A. Lee, C. Jiayun, M. Cadene, B.T. Chait and R. MacKinnon: “Crystal structure and mechanism of a calcium-gated potassium channel”, Nature, Vol. 417, (2002), pp. 515–522.
  • [99] Q.X. Jiang, D.N. Wang and R. MacKinnon: “Electron microscopic analysis of kvap voltage-dependent k+ channels in an open conformation”, Nature, Vol. 430, (2004), pp. 806–810.
  • [100] V. Ruta and R. MacKinnon: “Localization of the voltage-sensor toxin receptor on kvap”, Biochemistry, Vol. 43, (2004), pp. 10071–10079. [Crossref]
  • [101] J. Holyoake, C. Domene, J.N. Bright and M.S.P. Sansom: “KcsA closed and open: Modeling and simulations studies”, Eur. Biophys. J., Vol 33, (2004), pp. 238–246.
  • [102] Y. Jiang, V. Ruta, J. Chen, A. Lee and R. MacKinnon: “The principle of gating charge movement in a voltage-dependent k+ channel”, Nature, Vol. 423, (2003), pp. 42–48.
  • [103] Y. Jiang, A. Lee, J. Chen, V. Ruta, M. Cadene, B.T. Chait and R. MacKinnon: “X-ray structure of a voltage-dependent k+ channel”, Nature, Vol. 423, (2003), pp. 33–41.
  • [104] Z. Sands, A. Grottesi, M.S.P. Sansom: “Voltage-gated ion channels”, Curr. Biol., Vol 15, (2005), pp. R44–R47.
  • [105] C.S. Gandhi and E.Y. Isacoff: “Molecular models of voltage sensing”, J. Gen. Physiol., Vol 120, (2002), pp. 455–463. [Crossref]
  • [106] D.M. Starace and F. Bezanilla: “A proton pore in a potassium channel voltage sensor reveals a focused electric field”, Nature, Vol. 427, (2004), pp. 548–553.
  • [107] L.G. Cuello, D.M. Cortes and E. Perozo: “Molecular architecture of the KvAp voltage-dependent K+ channel in a lipid bilayer”, Science, Vol. 306, (2004), pp. 491–495.
  • [108] S.B. Long, E.B. Campbell and R. Mackinnon: “Voltage sensor of kv1.2: Structural basis of electromechanical coupling”, Science, Vol. 309, (2005), pp. 903–908.
  • [109] S.B. Long, E.B. Campbell and R. Mackinnon: “Crystal structure of a mammalian voltage-dependent shaker family K+ channel”, Science, Vol. 309, (2005), pp. 897–903.
  • [110] W. Treptow and M. Tarek: “Environment of the gating charges in the Kv1.2 shaker potassium channel”, Biophys. J., Vol 90, (2006), pp. L64–66.
  • [111] P.J. Bond and M.S.P. Sansom: “Bilayer deformation by the Kv channel voltage sensor domain revealed by self-assembly simulations”, P. Natl. Acad. Sci. USA, Vol. 104, (2007), pp. 2631–2636. [Crossref]
  • [112] Z.A. Sands and M.S. Sansom: “How does a voltage sensor interact with a lipid bilayer? Simulations of a potassium channel domain”, Structure, Vol. 15, (2007), pp. 235–244. [Crossref]
  • [113] R.B. Bass, P. Strop, M. Barclay and D.C. Rees: “Crystal structure of escherichia coli mscs, a voltage-modulated and mechanosensitive channel”, Science, Vol. 298, (2002), pp. 1582–1587.
  • [114] G. Chang, R.H. Spencer, A.T. Lee, M.T. Barclay and D.C. Rees: “Structure of the mscl homolog from mycobacterium tuberculosis: A gated mechanosensitive ion channel”, Science, Vol. 282, (1998), pp. 2220–2226.
  • [115] Y.X. Jiang, A. Lee, J.Y. Chen, M. Cadene, B.T. Chait and R. MacKinnon: “The open pore conformation of potassium channels”, Nature, Vol. 417, (2002), pp. 523–526.
  • [116] S. Sukharev and A. Anishkin: “Mechanosensitive channels: What can we learn from ’simple’ model systems?”, Trends Neurosci, Vol. 27, (2004), pp. 345–351. [Crossref]
  • [117] E. Perozo and D.C. Rees: “Structure and mechanism in prokaryotic mechanosensitive channels”, Curr. Opin. Struct. Biol., Vol 13, (2003), pp. 432–442. [Crossref]
  • [118] P. Strop, R. Bass and D.C. Rees: “Prokaryotic mechanosensitive channels”, Adv. Protein. Chem., Vol 63, (2003), pp. 177–209. [Crossref]
  • [119] B. Martinac, M. Buechner, A.H. Delcour, J. Adler and C. Kung: “Pressure-sensitive ion channel in escherichia coli”, P. Natl. Acad. Sci. USA, Vol. 84, (1987), pp. 2297–2301. [Crossref]
  • [120] S.I. Sukharev, W.J. Sigurdson, C. Kung and F. Sachs: “Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL”, J. Gen. Physiol., Vol 113, (1999), pp. 525–539. [Crossref]
  • [121] S. Sukharev, M.J. Schroeder and D.R. McCaslin: “Re-examining the multimeric structure of the large conductance bacterial mechanosensitive channel, mscl”, Biophys. J., Vol 76, (1999), pp. A138–A138.
  • [122] S. Sukharev: “Mechanosensitive channels in bacteria as membrane tension reporters”, FASEB J., Vol 13, (1999), pp. S55–S61.
  • [123] C.C. Hase, A.C. Ledain and B. Martinac: “Purification and functional reconstitution of the recombinant large mechanosensitive ion-channel (mscl) of escherichiacoli”, J. Biol. Chem., Vol 270, (1995), pp. 18329–18334. [Crossref]
  • [124] L.E. Bilston and K. Mylvaganam: “Molecular simulations of the large conductance mechanosensitive (MscL) channel under mechanical loading”, FEBS Lett., Vol 512, (2002), pp. 185–190.
  • [125] J. Gullingsrud, D. Kosztin and K. Schulten: “Structural determinants of mscl gating studied by molecular dynamics simulations”, Biophys. J., Vol 80, (2001), pp. 2074–2081. [Crossref]
  • [126] J.R. Gullingsrud, D. Kosztin and K. Schulten: “MscL gating studied by molecular dynamics simulations”, Biophys. J., Vol 80, (2001), p. 497.
  • [127] J.R. Gullingsrud and K. Schulten: “Gating mechanisms of mscl studied by molecular dynamics simulations using applied surface tension”, Biophys. J., Vol 82, (2002), p. 3066.
  • [128] S. Sukharev, M. Betanzos, C.S. Chiang and H.R. Guy: “The gating mechanism of the large mechanosensitive channel mscl”, Nature, Vol. 409, (2001), pp. 720–724.
  • [129] G.R. Meyer, J. Gullingsrud, K. Schulten and B. Martinac: “Molecular dynamics study of mscl interactions with a curved lipid bilayer”, Biophys. J., Vol 91, (2006), pp. 1630–1637. [Crossref]
  • [130] M.D. Edwards, Y.Z. Li, S. Kim, S. Miller, W. Bartlett, S. Black, S. Dennison, I. Iscla, P. Blount and J.U. Bowie et al.: “Pivotal role of the glycine-rich tm3 helix in gating the mscs mechanosensitive channel”, Nat. Struct. Biol., Vol 12, (2005), pp. 113–119.
  • [131] M.D. Edwards, I.R. Booth and S. Miller: “Gating the bacterial mechanosensitive channels: MscS a new paradigm?”, Curr. Opin. Microbiol., Vol 7, (2004), pp. 163–167. [Crossref]
  • [132] M. Sotomayor, V. Vasquez, E. Perozo and K. Schulten: “Ion conduction through MscS as determined by electrophysiology and simulation”, Biophys. J., Vol 92, (2007), pp. 886–902. [Crossref]
  • [133] A. Kuo, C. Domene, L. Johnson, D. Doyle and C. Venien-Bryan: “Two different conformational states of the KirBac3.1 potassium channel revealed by electron crystallography”, Structure, Vol. 13, (2005), pp. 1463–1472.
  • [134] C. Domene, D. Doyle and C. Venien-Bryan: “Modeling of an ion channel in its open conformation”, Biophys. J., Vol 89, (2005), pp. L1–L3.
  • [135] J.L. Robertson and B. Roux: “One channel: Open and closed”, Structure, Vol. 13, (2005), pp. 1398–1400. [Crossref]
  • [136] A. Grotessi, C. Domene, B. Hall and M.S.P. Sansom: “Conformational dynamics of M2 helices in KirBac channels: helix flexibility in relation to gating via molecular dynamics simulations”, Biochemistry, Vol. 44, (2005), pp. 14586–14594. [Crossref]
  • [137] D.A. Doyle, J.M. Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Cahit and R. MacKinnon: “The structure of the potassium channel: Molecular basis of k+ conduction and selectivity”, Science, Vol. 280, (1998), pp. 69–77.
  • [138] C. Domene and M.S.P. Sansom: “Potassium channel, ions, and water: Simulation studies based on the high resolution x-ray structure of kcsa”, Biophys. J., Vol 85, (2003), pp. 2787–2800. [Crossref]
  • [139] I.H. Shrivastava and M.S.P. Sansom: “Simulations of ion permeation through a potassium channel: Molecular dynamics of KcsA in a phospholipid bilayer”, Biophys. J., Vol 78, (2000), pp. 557–570. [Crossref]
  • [140] L. Guidoni, V. Torre and P. Carloni: “Water and potassium dynamics inside the kcsa k+ channel”, FEBS Lett., Vol 477, (2000), pp. 37–42. [Crossref]
  • [141] L. Guidoni and P. Carloni: “Potassium permeation through the kcsa channel: A density functional study”, Biochim. Biophys. Acta, Vol. 1563, (2001), pp. 1–6.
  • [142] S. Bernèche and B. Roux: “Molecular dynamics of the kcsa k+ channel in a bilayer membrane”, Biophys. J., Vol 78, (2000), pp. 2900–2917. [Crossref]
  • [143] Y. Zhou, J.H. Morais-Cabral, A. Kaufman and R. MacKinnon: “Chemistry of ion coordination and hydration revealed by a K+ channel-fab complex at 2.0 A resolution”, Nature, Vol. 414, (2001), pp. 43–48.
  • [144] M. LeMasurier, L. Heginbotham and C. Miller: “Kcsa: It’s a potassium channel”, J. Gen. Physiol., Vol 118, (2001), pp. 303–313. [Crossref]
  • [145] J.H. Morais-Cabral, Y. Zhou and R. MacKinnon: “Energetic optimization of ion conduction by the k+ selectvity filter”, Nature, Vol. 414, (2001), pp. 37–42.
  • [146] L. Heginbotham, M. LeMasurier, L. Kolmakova-Partensky and C. Miller: “Single streptomyces lividans k+ channels: Functional asymmetries and sidedness of proton activation”, J. Gen. Physiol., Vol 114, (1999), pp. 551–559. [Crossref]
  • [147] Y.F. Zhou and R. MacKinnon: “The occupancy of ions in the K+ selectivity filter: Charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates”, J. Mol. Biol., Vol 333, (2003), pp. 965–975. [Crossref]
  • [148] M. Zhou and R. MacKinnon: “A mutant KcsA K+ channel with altered conduction properties and selectivity filter ion distribution”, J. Molec. Biol., Vol 338, (2004), pp. 839–846.
  • [149] N. Shi, S. Ye, A. Alam, L.P. Chen and Y.X. Jiang: “Atomic structure of a Na+-and K+-conducting channel”, Nature, Vol. 440, (2006), pp. 570–574.
  • [150] S.Y. Noskov and B. Roux: “Importance of hydration and dynamics on the selectivity of the kcsa and nak channels”, J. Gen. Physio., Vol 129, (2007), pp. 135–143. [Crossref]
  • [151] V.B. Luzhkov and J. Aqvist: “K+/Na+ selectivity of the kcsa potassium channel from microscopic free energy perturbation calculations”, Biochim. Biophys. Acta, Vol. 1548, (2001), pp. 194–202.
  • [152] V. Luzhkov and J. Aqvist: “Ions and blockers in potassium channels: Insights from free energy simulations”, Biochim Biophys Acta, Vol. 1747, (2005), pp. 109–120.
  • [153] S.Y. Noskov, S. Berneche and B. Roux: “Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands”, Nature, Vol. 431, (2004), pp. 830–834.
  • [154] S.Y. Noskov, S. Berneche and B. Roux: “The microscopic origin of ion selectivity in potassium channels”, Biophys. J., Vol 86, (2004), pp. 351a–352a.
  • [155] W. Treptow and M. Tarek: “K+ conduction in the selectivity filter of potassium channels is monitored by the charge distribution along their sequence”, Biophys. J., Vol 91, (2006), pp. L81–83. [Crossref]
  • [156] M. Hellgren, L. Sandberg and O. Edholm: “A comparison between two prokaryotic potassium channels (Kirbac1.1 and Kcsa) in a molecular dynamics simulation study”, Biophys. Chem., Vol 120, (2006), pp. 1–9. [Crossref]
  • [157] C. Domene, A. Grottesi, M.S.P. Sansom MSP: “Filter flexibility and distortion in a bacterial inward rectifier k+ channel: Simulation studies of KirBac1.1”, Biophys. J., Vol 87, (2004), pp. 256–267. [Crossref]
  • [158] F. Khalili-Araghi, E. Tajkhorshid and K. Schulten: “Dynamics of k+ ion conduction through kv1.2”, Biophys. J., Vol 91, (2006), pp. L72–74. [Crossref]
  • [159] S. Berneche and B.I. Roux: “A gate in the selectivity filter of potassium channels”, Structure, Vol. 13, (2005), pp. 591–600. [Crossref]
  • [160] C.E. Capener, H.J. Kim, Y. Arinaminpathy and M.S.P. Sansom: “Ion channels: Structural bioinformatics and modelling”, Hum. Mol. Genet., Vol 11, (2002), pp. 2425–2433. [Crossref]
  • [161] C.E. Capener and M.S.P. Sansom: “MD simulations of a K channel model-sensitivity to changes in ions, waters and membrane environment”J. Phys. Chem. B, Vol. 106, (2002), pp. 4543–4551. [Crossref]
  • [162] K.M. Ranatunga, R.J. Law, G.R. Smith and M.S.P. Sansom: “Electrostatics studies and molecular dynamics simulations of a homology model of the shaker k+ channel pore”, Eur. Biophys. J. Biophy., Vol 30, (2001), pp. 295–303. [Crossref]
  • [163] N.P. Mongan, A.K. Jones, G.R. Smith, M.S.P. Sansom and D.B. Sattelle: “Novel alpha 7-like nicotinic acetylcholine receptor subunits in the nematode caenorhabditis elegans”, Protein. Sci., Vol 11, (2002), pp. 1162–1171.
  • [164] A.G. Lee: “How lipids and proteins interact in a membrane: A molecular approach”, Mol. Biosystems, Vol. 1, (2005), pp. 203–212. [Crossref]
  • [165] D.P. Tieleman, S.J. Marrink and H.J.C. Berendsen: “A computer perspective of membranes: Molecular dynamics studies of lipid bilayer systems”, BBA-Rev. Biomembranes, Vol. 1331, (1997), pp. 235–270.
  • [166] D.J. Tobias, K.C. Tu and M.L. Klein: “Atomic-scale molecular dynamics simulations of lipid membranes”, Curr. Opin. Colloid In., Vol 2, (1997), pp. 15–26. http://dx.doi.org/10.1016/S1359-0294(97)80004-0[Crossref]
  • [167] B. Roux and T.B. Woolf: “Molecular dynamis of pf1 coat protein in a phospholipid bilayer”, In: K.M. Merz (Ed.): Biological membranes: A molecular perspective from computation and experiment, Birkhäuser, 1996, p. 587.
  • [168] T.B. Woolf and B. Roux: “Structure, energetics, and dynamics of lipid-protein interactions-a molecular-dynamics study of the gramicidin-a channel in a dmpc bilayer”, Proteins, Vol. 24, (1996), pp. 92–114. [Crossref]
  • [169] K. Belohorcova, J.H. Davis, T.B. Woolf and B. Roux: “Structure and dynamics of an amphiphilic peptide in a lipid bilayer: A molecular dynamics study”, Biophys. J., Vol 73, (1997), pp. 3039–3055. [Crossref]
  • [170] D.P. Tieleman, L.R. Forres, M.S.P. Sansom and H.J.C. Berendsen: “Lipid properties and the orientation of aromatic residues in OmpF, influenza M2, and alamethicin systems: Molecular dynamics simulations”, Biochemistry, Vol. 37, (1998), pp. 17554–17561. [Crossref]
  • [171] T.B. Woolf: “Molecular dynamics of individual-helices of bacteriorhodopsin in dimyristoyl phosphatidylcholine. I. Structure and dynamics”, Biophys. J., Vol 73, (1997), pp. 2376–2392. [Crossref]
  • [172] T.B. Woolf: “Molecular dynamics of individual-helices of bacteriorhodopsin in dimyristoyl phosphatidylcholine. Ii. Interaction energy analysis”, Biophys. J., Vol 74, (1998), pp. 115–131. [Crossref]
  • [173] H.I. Petrache, A. Grossfield, K.R. MacKenzie, D.M. Engelman and T.B. Woolf: “Modulation of glycophorin a transmembrane helix interactions by lipid bilayers: Molecular dynamics calculations”, J. Molec. Biol., Vol 302, (2000), pp. 727–746.
  • [174] H.I. Petrache, D.M. Zuckerman, J.N. Sachs, J.A. Killian, R.E. Koeppe and T.B. Woolf: “Hydrophobic matching mechanism investigated by molecular dynamics simulations”, Langmuir, Vol. 18, (2002), pp. 1340–1351. [Crossref]
  • [175] P.K. Fyfe, K.E. McAuley, A.W. Roszak, N.W. Isaacs, R.J. Cogdell and M.R. Jones: “Probing the interface between membrane proteins and membrane lipids by x-ray crystallography”, Trends Biochem. Sci., Vol 26, (2001), pp. 106–112. [Crossref]
  • [176] A.H. O’Keeffe, J.M. East and A.G. Lee: “Selectivity in lipid binding to the bacterial outer membrane protein OmpF”, Biophys. J., Vol 79, (2000), pp. 2066–2074.
  • [177] C. Fernandez, C. Hilty, G. Wider and K. Wuthrich: “Lipid-protein interactions in dhpc micelles containing the integral membrane protein OmpX investigated by nmr spectroscopy”, P. Natl. Acad. Sci. USA, Vol. 99, (2002), pp. 13533–13537. [Crossref]
  • [178] A.J. Costa, R.H. Crepeau, P.P. Borbat, M.T. Ge and J.H. Freed: “Lipid-gramicidin interactions: Dynamic structure of the boundary lipid by 2d-eldor”, Biophys. J., Vol 84, (2003), pp. 3364–3378. [Crossref]
  • [179] M.R.R. de Planque, B.B. Bonev, J.A.A. Demmers, D.V. Greathouse, R.E. Koeppe, F. Separovic, A. Watts and J.A. Killian: “Interfacial anchor properties of tryptophan residues in transmembrane peptides can dominate over hydrophobic matching effects in peptide-lipid interactions”, Biochemistry, Vol. 42, (2003), pp. 5341–5348.
  • [180] J. Carney, J. East and A. Lee: “Penetration of lipid chains into transmembrane surfaces of membrane proteins: Studies with MscL”, Biophys J., Vol 92, (2007), pp. 3556–3563 [Crossref]
  • [181] F.I. Valiyaveetil, Y. Zhou and R. MacKinnon: “Lipids in the structure, folding and function of the kcsa channel”, Biochem., Vol 41, (2002), pp. 10771–10777. [Crossref]
  • [182] J.A.A. Demmers, A. van Dalen, B. de Kruijff, A.J.R. Heck and J.A. Killian: “Interaction of the k+ channel kcsa with membrane phospholipids as studied by esi mass spectrometry”, FEBS Lett., Vol 541, (2003), pp. 28–32.
  • [183] S.J. Alvis, I.M. Williamson, J.M. East and A.G. Lee: “Interactions of anionic phospholipids and phosphatidylethanolamine with the potassium channel kcsa”, Biophys. J., Vol 85, (2003), pp. 3828–3838. http://dx.doi.org/10.1016/S0006-3495(03)74797-3[Crossref]
  • [184] S.S. Deol, P.J. Bond, C. Domene and M.S.P. Sansom: “Lipid-protein interactions of integral membrane proteins: A comparative simulation study”, Biophys. J., Vol 87, (2004), pp. 3737–3749. [Crossref]
  • [185] C. Domene, P.J. Bond, S.S. Deol and M.S.P. Sansom: “Lipid/protein interactions and the membrane/water interfacial region”, J. Am. Chem. Soc., Vol 125, (2003), pp. 14966–14967. [Crossref]
  • [186] P.J. Bond and M.S.P. Sansom: “Membrane protein dynamics versus environment: Simulations of ompa in a micelle and in a bilayer”, J. Mol. Biol., Vol 329, (2003), pp. 1035–1053.
  • [187] W.M. Yau, P.J. Steinbach, W.C. Wimley, S.H. White and K. Gawrisch: “Indole and n-methyl indole orientation in lipid bilayers”, Biophys. J., Vol 74, (1998), p. A303.
  • [188] W.M. Yau, W.C. Wimley, K. Gawrisch and S.H. White: “The preference of tryptophan for membrane interfaces”, Biochemistry, Vol. 37, (1998), pp. 14713–14718. [Crossref]
  • [189] S.S. Deol, C. Domene, P.J. Bond, M.S.P. Sansom: “Anionic phospholipid interactions with the potassium channel KcsA: Simulation studies”, Biophys. J., Vol 90, (2006), pp. 822–830. [Crossref]
  • [190] C. Domene, S. Vemparala, M. Klein, C. Venien-Bryan and D. Doyle: “Role of aromatic localization in the gating process of a potassium channel”, Biophys. J., Vol 90, (2006), pp. L1–L3.
  • [191] S. Haider, S. Khalid, S.J. Tucker, F.M. Ashcroft and M.S. Sansom: “Molecular dynamics simulations of inwardly rectifying (kir) potassium channels: A comparative study”, Biochemistry, Vol. 46, (2007), pp. 3643–3652. [Crossref]
  • [192] P. Moe and P. Blount: “Assessment of potential stimuli for mechano-dependent gating of mscl: Effects of pressure, tension, and lipid headgroups”, Biochemistry, Vol. 44, (2005), pp. 12239–12244. [Crossref]
  • [193] A.M. Powl, J. Carney, P. Marius, J.M. East and A.G. Lee: “Lipid interactions with bacterial channels: Fluorescence studies”, Biochem. Soc. T., Vol 33, (2005), pp. 905–909. [Crossref]
  • [194] A.M. Powl, J.M. East and A.G. Lee: “Lipid-protein interactions studied by introduction of a tryptophan residue: The mechanosensitive channel MscL”, Biochemistry, Vol. 42, (2003), pp. 14306–14317. [Crossref]
  • [195] L.K. Tamm, J. Crane and V. Kiessling: “Membrane fusion: A structural perspective on the interplay of lipids and proteins”, Curr. Opin. Struc. Biol., Vol 13, (2003), pp. 453–466. [Crossref]
  • [196] M.S. Sansom, P.J. Bond, S.S. Deol, A. Grottesi, S. Haider and Z.A. Sands: “Molecular simulations and lipid-protein interactions: Potassium channels and other membrane proteins”, Biochem. Soc. T., Vol 33, (2005), pp. 916–920. [Crossref]
  • [197] S.O. Nielsen, C.F. Lopez, G. Srinivas and M.L. Klein: “Coarse grain models and the computer simulation of soft materials”, J. Phys-Condens. Mat., Vol 16, (2004), pp. R481–R512.
  • [198] L. Saiz and M.L. Klein: “Computer simulation studies of model biological membranes”, Accounts of Chem. Res., Vol 35, (2002), pp. 482–489. [Crossref]
  • [199] L. Vigh, Z. Torok, G. Balogh, A. Glatz, S. Piotto and I. Horvath: “Membraneregulated stress response: A theoretical and practical approach”, Adv. Exp. Med. Biol., Vol 594, (2007), pp. 114–131. http://dx.doi.org/10.1007/978-0-387-39975-1_11[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11532-007-0028-6
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.