Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2007 | 5 | 3 | 846-857

Article title

Immobilization of soil mercury by colloidal sulphur in the laboratory experiment

Content

Title variants

Languages of publication

EN

Abstracts

EN
The results of the laboratory pot experiments on soil mercury (Hg) immobilisation with a non-toxic and price-reasonable agent - colloidal sulphur (S) water suspension, are presented. It was shown that fertilisation with small agrochemical doses of colloidal S reduces excess Hg effectively as follows: in interstitial waters by a factor 2 – 12 times for total Hg, and 22– 680 times for “reactive” Hg; in stems and leaves of oats – 7 – 22 times; and in moss bags, reflecting soil Hg degassing, 7 – 15 times, for the most heavily Hg-spiked soils. The results obtained allowed to conclude that the immobilization of Hg occurs through Hg binding to the newly formed S-bearing functional groups in humic acids and/or sulphides. [...]

Publisher

Journal

Year

Volume

5

Issue

3

Pages

846-857

Physical description

Dates

published
1 - 9 - 2007
online
20 - 5 - 2007

Contributors

author
  • Agricultural Experimental Center, Department of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa, 32000, State of Israel
  • Institute for Tectonics and Geophysics, Far East Branch of the Russ. Ac. Sci., 65 Kim Yu Chen St., Khabarovsk, 680000, Russian Federation
  • Institute of Water and Ecological Problems, Far East Branch of the Russ. Ac. Sci., 65 Kim Yu Chen St., Khabarovsk, 680000, Russian Federation

References

  • [1] Arnold, C.L., and C.J. Gibbons, 1996, Impervious surface coverage: the emergence of a key environmental indicator, J. Am. Plan. Assoc. 62, 243–258. [Crossref]
  • [2] Astatkie, T., D.G. Watts and W.E. Watt, 1997, Nested threshold autoregressive (NeTAR) models, International Journal of Forecasting 13, 105–116. http://dx.doi.org/10.1016/S0169-2070(96)00716-9[Crossref]
  • [3] F.S. Kot and L.A. Matyushkina: “Distribution of mercury in chemical fractions of contaminated urban soils of Middle Amur”, J. Environ. Monit., Vol. 4, (2002), pp. 803–808. http://dx.doi.org/10.1039/b203414j[Crossref]
  • [4] J. Hinton and M. Veiga: “Mercury contaminated sites: A review of remedial solutions“, In: Proceedings of NIMD (National Institute for Minamata Disease) Forum 2001, March 19–20, 2001, Minamata, Japan, 2001, pp. 19–40.
  • [5] A.R. Hutchinson and D.A. Atwood: “Mercury pollution and remediation: the chemist’s response to a global crisis”, J. Chem. Crystallogr., Vol. 33(8), (2003), pp. 631–645. http://dx.doi.org/10.1023/A:1024906212586[Crossref]
  • [6] H. Biester and H. Zimmer: “Solubility and changes of mercury binding forms in contaminated soils after immobilization treatment”, Environ. Sci. Technol., Vol. 32, (1998), pp. 2755–2762. http://dx.doi.org/10.1021/es9709379[Crossref]
  • [7] M.M.C. Alkemade and J.I.A. Koene: “The useful application of sulphur-bound waste materials”, Waste Manage., Vol. 16, (1996), pp. 185–188. http://dx.doi.org/10.1016/S0956-053X(96)00041-4[Crossref]
  • [8] M. Fuhrmann, D. Melamed, P.D. Kalb, J.W. Adams and L.W. Milian: “Sulfur polymer solidification/stabilization of elemental mercury waste”, Waste Manage., Vol. 22, (2002), pp. 327–333. http://dx.doi.org/10.1016/S0956-053X(01)00057-5[Crossref]
  • [9] M.M. Matlock, B.S. Howerton, K.R. Henke and D.A. Atwood: “A pyridine-thiol ligand with multiple bonding sites for heavy metal precipitation”, J. Hazard. Mater., Vol. 82, (2001), pp. 55–63. http://dx.doi.org/10.1016/S0304-3894(00)00353-8[Crossref]
  • [10] F.N. Moreno, C.W.N. Anderson, R.B. Stewart, B.H. Robinson, M. Ghomshei and J.A. Meech: “Induced plant uptake and transport of mercury in the presence of sulphur-containing ligands and humic acids”, New Phytol., Vol. 166, (2005), pp. 445–454. http://dx.doi.org/10.1111/j.1469-8137.2005.01361.x[Crossref]
  • [11] S.J. Chapman: “Powdered elemental sulphur: oxidation rate, temperature dependence and modelling”, Nutr. Cycl. Agroecosys., Vol. 47, (1997), pp. 19–28. http://dx.doi.org/10.1007/BF01985715[Crossref]
  • [12] J.S. Williams and R.M. Cooper: “The oldest fungicide and newest phytoalexin - a reappraisal of the fungitoxicity of elemental sulphur”, Plant Pathol., Vol. 53, (2004), pp. 263–279. http://dx.doi.org/10.1111/j.0032-0862.2004.01010.x[Crossref]
  • [13] M.O. Barnett, L.A. Harris, R.R. Turner, R.J. Stevenson, T.J. Henson, R.C. Melton and D.P. Hoffman: “Formation of mercuric sulfide in soil”, Environ. Sci. Technol., Vol. 31, (1997), pp. 3037–3043. http://dx.doi.org/10.1021/es960389j[Crossref]
  • [14] J.B. Percival, I. Drouin-Brisebois and W.L. Lockhart: “Mineralogical investigations of sediments from a mercury-contaminated lake in northwestern Ontario”, Current Research, Geol. Surv. Canada. Paper 1999-C, 1999, pp. 233–240.
  • [15] P. Outridge, J.B. Percival, W.L. Lockhart and G. Stern: “Geochemical and mineralogical investigations of potential chemical diagenesis in a varved Arctic lake sediment”, In: Proceedings of the 6th Int. Conf. Biogeochemistry of Trace Elements, University of Guelph, 2001, 2001, p. 69.
  • [16] N.S. Bloom and J. Katon: “Application of Selective Extractions to the Speciation of Mercury at Mining Sites”, In: Proceedings of the EPA Conference on Assessing and Managing Mercury from Historic and Current Mining Activities, San Francisco, CA, USA, November 28-30, 2000, 2000, pp. 78–83.
  • [17] Ch. Gagnon, Á. Pelletier and A. Mucci: “Behaviour of anthropogenic mercury in coastal marine sediments”, Mar. Chem., Vol. 59, (1997), pp. 159–176. http://dx.doi.org/10.1016/S0304-4203(97)00071-6[Crossref]
  • [18] E.M. Gstoettner and N.S. Fisher: “Accumulation of cadmium, Chromium, and zinc by the moss Sphagnum papillosum Lindle”, Water Air Soil Poll., Vol. 93, (1997), pp. 321–330. http://dx.doi.org/10.1023/A:1022117515040[Crossref]
  • [19] D.H. Landers and M.J. Mitchell: “Incorporation of 35SO42− into sediments of three New York lakes”, Hydrobiologia, Vol. 160, (1988), pp. 85–95.
  • [20] N.R. Urban, K. Ernst and S. Bernasconi: “Addition of sulfur to organic matter during early diagenesis of lake sediments”, Geochim. Cosmochim. Ac., Vol. 63, (1999), pp. 837–853. http://dx.doi.org/10.1016/S0016-7037(98)00306-8[Crossref]
  • [21] M.S. Aulakh, R.C. Jaggi and R. Sharma: “Mineralization-immobilization of soil organic S and oxidation of elemental S in subtropical soils under flooded and nonflooded conditions”, Biol. Fert. Soils, Vol. 35, (2002), pp. 197–203. http://dx.doi.org/10.1007/s00374-002-0461-9[Crossref]
  • [22] G.M. Varshal, I.Ya. Koshcheeva, S.D. Khushvakhtova, Yu.V. Kholin and O.A. Tyutyunnik: “On the sorption mechanism of mercury(II) by humic acids”, Eurasian Soil Sci., Vol. 9, (1998), pp. 966–972.
  • [23] U. Skyllberg, J. Qian, W. Frech, K. Xia and W.F. Bleam: “Distribution of mercury, methyl mercury and organic sulphur species in soil, soil solution and stream of a boreal forest catchment”, Biogeochemistry, Vol. 64, (2003), pp. 53–76. http://dx.doi.org/10.1023/A:1024904502633[Crossref]
  • [24] Trans-Siberia Pre-Congress Field Study Tour (A Guide-Book of Field Excursions), Scientific Centre for Biologic Investigations of the USSR Academy of Sciences in Pushchino, Pushchino, 1990.
  • [25] P. Li and A.C. Caldwell: “The oxidation rate of elemental sulphur in soil”, Soil Sci. Soc. Am. Proc., Vol. 30, (1966), pp. 370–372. http://dx.doi.org/10.2136/sssaj1966.03615995003000030021x[Crossref]
  • [26] R. Steudal: “Aqueous sulphur sols”, Top. Curr. Chem., Vol. 230, (2003), pp. 153–166.
  • [27] Ilmansuojelu. Bioindikaatio. Sammalpallomenetelm. (Air Protection. Bioindication. Moss Bag Method.), Finnish Standard Method SFS 5794, Helsinki, 1994-12-05, 1994. (in Finnish, English and Swedish abstracts)
  • [28] H. Biester, G. Müller and H.F. Scholer: “Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants”, Sci. Total Environ., Vol. 284, (2002), pp. 191–203. http://dx.doi.org/10.1016/S0048-9697(01)00885-3[Crossref]
  • [29] M. Lodenius, E. Tulisalo, A. Soltanpour-Gargari: “Sorption and desorption of gaseous mercury in moss tissue”, In: Papers of the 11th World Clean Air and Environment Congress “}The Interface between Developing and Developed Countries”. Durban, South Africa, Sept. 14-18, 1998, (1998), 3A-5
  • [30] E.J. Calabrese and L.A. Baldwin: “Chemical hormesis: its historical foundations as a biologic hypothesis”, Hum. Exp. Toxicol., Vol. 19(1), (2000), pp. 2–31. http://dx.doi.org/10.1191/096032700678815585[Crossref]
  • [31] D. Wallschläger, V.M.M. Desai, M. Spengler, C.C. Windmöller and R.-D. Wilken: “How humic substances dominate mercury geochemistry in contaminated floodplain soils and sediments”, J. Environ. Qual., Vol. 27, (1998), pp. 1044–1057. http://dx.doi.org/10.2134/jeq1998.00472425002700050009x[Crossref]
  • [32] M.M. Kononova and N.P. Belchikova: “Rapid method of humus composition determination of mineral soils”, Pochvovedenie, Vol. 10, (1961), pp. 1112–1121. (in Russian)
  • [33] B.A. Zvonarev and N.G. Zyrin: “The mercury sorption by soils. 2. Isotherms of mercury sorption by humus horizons of soils”, Vestnik Moscow Un., Ser. 17, Soil Sci., Vol. 1, (1983), pp. 52–58. (in Russian, English abstract)
  • [34] C.L. Rugh: “Mercury detoxication with transgenic plants and other biotechnological breakthrough for phytoremediation”, In Vitro Cell. Dev-Pl., Vol. 27, (2001), pp. 321–325. http://dx.doi.org/10.1007/s11627-001-0057-3[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11532-007-0027-7
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.