Preferences help
enabled [disable] Abstract
Number of results
2007 | 5 | 3 | 793-812
Article title

Electron rectification through donor-acceptor-heterocyclics connected to cumulenic bridge: a computational study

Title variants
Languages of publication
Density Functional Theory (DFT) calculations and Frontier Molecular Orbital (FMO) analysis have been carried out at B3LYP/6-31G(d,p) level of theory on some Donor-Bridge-Acceptor (D-B-A) molecules for their electrical rectification behavior. The donor-acceptor-heterocyclics (D/A-heterocyclics) (namely thiophene, furan and pyrrole rings) are attached as donor and acceptors to the two ends of cumulenic bridge. FMO analysis indicates that the molecules having even number of double bonds in the bridge, possess a complete localization of the MOs i.e., the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) are localized on the donor and the acceptor side of the molecules respectively, and LUMO+1 is localized on the donor side, where as in case of odd number of double bonds in the bridge, both the HOMO and LUMOs are delocalized all over the molecule. The Potential Drop (PD) in the former case decreases as the number of double bonds increases in the bridge and due to the presence of the mutually orthogonal and noninteracting π-clouds, they can act as molecular rectifiers. For the molecules with the odd number of double bonds due to the low-lying LUMO delocalized all over the molecule, may find application as molecular wires in molecular electronics circuits. [...]
Physical description
1 - 9 - 2007
26 - 4 - 2007
  • [1] M.A. Ratner: “Introducing molecular electronics”, Materials Today, Vol. 5, (2002), p. 20.[Crossref]
  • [2] R.M. Metzger: “Unimolecular rectifiers: Methods and challenges”, Anal. Chim. Acta, Vol. 568, (2006), p. 146.[Crossref]
  • [3] D.K. James and J.M. Tour: “Molecular wires”, Top. Curr. Chem., Vol. 257,(2005), p. 33.
  • [4] K. Walczak and S.E. Lyshevski: “Modeling transport through single-molecule junctions”, Cent. Eur. J. Phys., Vol. 3, (2005), p. 555.[Crossref]
  • [5] Yu. Dahnovskya, V.G. Zakrzewski, A. Kletsov and J.V. Ortiz: “Ab initio electron propagator theory of molecular wires. I. Formalism”, J. Chem. Phys., Vol. 123, (2005), p. 184711.[Crossref]
  • [6] G.J. Ashwell and A. Mohib: “Improved molecular rectification from self-assembled monolayers of a sterically hindered dye”, J. Am. Chem. Soc., Vol. 127, (2005), pp. 16238.[Crossref]
  • [7] R.L. McCreery: “Molecular electronic junctions”, Chem. Mater., Vol. 16, (2004), p. 4477.[Crossref]
  • [8] A.H. Flood, J.F. Stoddart, D.W. Steuerman and J.R. Heath: “Whence molecular-Electronics?”, Science, Vol. 306, (2004), pp. 2055.[Crossref]
  • [9] F.R.F. Fan, R.Y. Lai, J. Cornil, Y. Karzazi, J.L. Bredas, L. Cai, L. Cheng, Y. Yao, D.W. Price Jr., S.M. Dirk, J.M. Tour and A.J. Bard: “Electrons Are Transported through Phenylene-Ethynylene Oligomer Monolayers via Localized Molecular Orbitals”, J. Am. Chem. Soc., Vol. 126, (2004), p. 2568.[Crossref]
  • [10] J. Heurich, J.C. Cuevas, W. Wenzel and G. Schon: “Electrical transport through single-molecule junctions: From molecular orbitals to conduction channels”, Phys. Rev. Lett., Vol. 88, (2002), p. 256803.[Crossref]
  • [11] G. Pourtois, D. Beljonne, J. Cornil, M.A. Ratner, J.L. Bredas: “Photoinduced electron-transfer processes along molecular wires based on phenylenevinylene oligomers: A quantum-chemical insight”, J. Am. Chem. Soc., Vol. 124, (2002), p. 4436.[Crossref]
  • [12] M. Di Ventra, S.T. Pantelides and N.D. Lang: “Current-induced forces in molecular wires”, Phys. Rev. Lett., Vol. 88, (2002), p. 046801.[Crossref]
  • [13] J. Taylor, M. Brandbyge and K. Stokbro: “Theory of rectification of Tour wires: the role of electrode coupling”, Phys. Rev. Lett., Vol. 89, (2002), p. 138301.[Crossref]
  • [14] C. Joachim, J.K. Gimzewski and A. Aviram: “Electronics using hybrid-molecular and mono molecular devices”, Nature, Vol. 408, (2000), p. 541.[Crossref]
  • [15] P.S. Damle, A.W. Ghosh and S. Datta: “Unified description of molecular conduction from molecules to metallic wires”, Phys. Rev. B, Vol. 64, (2001), p. 201403.[Crossref]
  • [16] C.P. Collier, G. Mattersteig, E.W. Wong, Y. Luo, K. Beverly, J. Sampaio, F.M. Raymo, J.F. Stoddart, J.R. Heath: “A [2]catenane-based solid state Electronically reconfigurable switch”, Science, Vol. 289, (2000), p. 1172.[Crossref]
  • [17] J.M. Seminario, A.G. Zacarias and J.M. Tour: “Theoretical study of a molecular resonant diode”, J. Am. Chem. Soc., Vol. 122, (2000), p. 3015.[Crossref]
  • [18] A. Onipko: “Analytical model of molecular wire performance: A comparison of ? and ? electron systems”, Phys. Rev. B, Vol. 59, (1999), p. 9995.[Crossref]
  • [19] A. Aviram and M.A. Ratner: “Molecular Rectifier”, Chem. Phys. Lett., Vol. 29, (1974), p.277.[Crossref]
  • [20] B. Mukherjee, K. Mohanta and A.J. Pal: “Tuning of molecular rectification in donor/acceptor assemblies via supramolecular structures”, Chem. Mater., Vol. 18, (2006), p. 3302.[Crossref]
  • [21] F. Remacle and R.D. Levine: “Electrical transport in saturated and conjugated molecular wires”, Faraday Discuss., Vol. 131, (2006), p. 45.[Crossref]
  • [22] H. Mizuseki, K. Niimura, C. Majumder, Y. Kawazoe: “Theoretical study of the alkyl derivative C37H50N4O4 molecule for use as a stable molecular rectifier: Geometric and electronic structures”, Comp. Mat. Sci., Vol. 27, (2003), p. 161.[Crossref]
  • [23] H. Mizuseki, N. Igarashi, C. Majumder, R.V. Belosludov, A.A. Farajian, Y. Kawazoe: “Theoretical study of donor-spacer-acceptor structure molecule for use as stable molecular rectifier: Geometric and electronic structures”, Thin Solid Films, Vol. 438-439, (2003), p. 235.[Crossref]
  • [24] C. Majumder, H. Mizuseki and Y. Kawazoe: “Molecular scale rectifier: Theoretical study”, J. Phys. Chem., Vol. 105, (2001), p. 9454.
  • [25] R. M. Metzger, T. Xu and R. Peterson: “Electrical rectification by a monolayer of hexadecyl-quinolinium tricyanoquinodimethanide measured between macroscopic gold electrodes”, J. Phys. Chem. B, Vol. 105, (2001), p.7280.[Crossref]
  • [26] T. Sano, Y. Nishio, Y. Hamada, H. Takahashi, T. Usuki and K. Shibata: “Design of conjugated molecular materials for optoelectronics”, J. Mater. Chem., Vol. 10, (2000), p. 157.[Crossref]
  • [27] K. Walczak: “The role of quantum interference in determining transport properties of molecular bridges”, Central Eur. J. Chem., Vol. 2, (2004), pp. 524.[Crossref]
  • [28] P.E. Kornilovitch, A.M. Bratkovsky and R.S. Williams: “Current rectification by molecules with asymmetric tunneling barriers”, Phys. Rev. B, Vol. 66, (2002), p. 1654361.
  • [29] C. Krzeminski, C. Delerue, G. Allan, D. Vuillaume and R.M. Metzger: “Theory of electrical rectification in a molecular monolayer”, Phys. Rev. B, Vol. 64, (2001), p. 854051.[Crossref]
  • [30] J.C. Ellenbogen and J.C. Love: “Architectures for molecular electronic computers: 1.Logic structures and an adder designed from molecular electronic diodes”, Proc. IEEE, Vol. 88, (2000), p. 386.[Crossref]
  • [31] R.M. Metzger: “All about (N-hexadecylquinolin-4-ium-1-yl)methylidenetricyano quino dimethanide, a unimolecular rectifier of electrical current”, J. Mater. Chem., Vol. 10, (2000), p. 55.[Crossref]
  • [32] S. Sitha and K. Bhanuprakash: “Electrical rectification through cumulenic bridge: A computational study”, Synthetic Met., Vol. 148, (2005), p. 227.[Crossref]
  • [33] W.W. Cheng, X.Y. Liao, H. Chen, R. Note, H. Mizuseki and Y. Kawazoe: “Electron transport through heterocyclic molecule: Ab initio molecular orbital theory”, Phys. Lett. A, Vol. 326, (2004), p. 412.[Crossref]
  • [34] J. Becher, J.O. Jeppesen and K. Nielsen: “Tetrathiafulvalenes: From heterocyclic chemistry to molecular devices”, Synthetic Met., Vol. 133-134, (2003), p. 309.[Crossref]
  • [35] T. Otsubo, Y. Aso and K. Takimiya: “Functional oligothiophenes as advanced molecular electronic materials”, J. Mater. Chem., Vol.2 (2002), p. 2565.[Crossref]
  • [36] T. Otsubo, Y. Aso and K. Takimiya: “Synthesis, optical, and conductive properties of long oligothiophenes and their utilization as molecular wires”, B. Agr. Chem. Soc. Japan, Vol. 74, (2001), p. 1789.[Crossref]
  • [37] J. Li, J.K. Tomfohr and O.F. Sankey: “Theoretical study of carotene as a molecular wire”, Physica E, Vol. 19, (2003), p. 133.[Crossref]
  • [38] C. Majumder, H. Mizuseki and Y. Kawazoe: “Theoretical analysis for a molecular resonant tunneling diode”, Jpn. J. Appl. Phys., Vol. 41, (2002), pp. 2770.[Crossref]
  • [39] C. Majumder, T. Briere, H. Mizuseki and Y. Kawazoe: “Molecular resistance in a molecular diode: A case study of the substituted phenylethynyl oligomer”, J. Phys. Chem., Vol. 106, (2002), pp. 7911.
  • [40] M.J. Frisch et al.: Gaussian 03w, Revision A.1, Gaussian, Inc., Pittsburgh PA, 2003.
  • [41] J. March, Advanced Organic Chemistry, Wiley Eastern, New York, 1987.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.