PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2007 | 5 | 3 | 779-792
Article title

Electrospinning of the hydrophilic poly (2-hydroxyethyl methacrylate) and its copolymers with 2-ethoxyethyl methacrylate

Content
Title variants
Languages of publication
EN
Abstracts
EN
The goal was to electrospin 2-hydroxyethyl methacrylate - based biocompatible polymers and prepare submicron fibres (nanofibers) for biomedicinal applications. Syntheses of poly(2-hydroxyethyl methacrylate) (HEMA) and its copolymer with 2-ethoxyethyl methacrylate (EOEMA), and their characterization by viscometry and molecular weight are described. Their relation to electrospinning is discussed. Electrospinning of HEMA homopolymer from water-ethanol is successful for molecular weights 6.31 × 105 and 1.80 × 106 g/mol. Electrospinning of HEMA/EOEMA copolymers is feasible from ethanol. [...]
Publisher
Journal
Year
Volume
5
Issue
3
Pages
779-792
Physical description
Dates
published
1 - 9 - 2007
online
26 - 4 - 2007
References
  • [1] J. Zeleny: “The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at thin surfaces”, Phys. Rev., Vol.3, (1914), pp.69–91. http://dx.doi.org/10.1103/PhysRev.3.69[Crossref]
  • [2] G. Taylor: “Disintegration of water drops in an electrical field”, Proc. R. Soc. Lon. Ser-A, Vol. 280, (1964), pp. 383–397. [Crossref]
  • [3] A. Formhals: Process and apparatus for preparing artificial threads, US 1,975,504.
  • [4] P. Gupta, S.R. Trenor, E.T. Long and G.L. Wilkes: “In Situ Photo-Cross-Linking of Cinnamate Functionalized Poly(methyl methacrylate-co-2-hydroxyethyl acrylate) Fibers during Electrospinning”, Macromolecules, Vol. 37, (2005), pp. 9211–9218. http://dx.doi.org/10.1021/ma048844g[Crossref]
  • [5] J. Ayutsede, M. Gandhi, S. Sukigara, M. Micklus, H.E. Chen and F. Ko: “Regeneration of Bombyx mori silk by electrospinning. Part 3: characterization of electrospun nonwoven materials”, Polymer, Vol. 46, (2005), pp. 1625–1634. http://dx.doi.org/10.1016/j.polymer.2004.11.029[Crossref]
  • [6] D.H. Reneker, A.L. Yarin H. Fong and S. Koombhongse: “Bending instability of electrically charged liquid jets of polymer solutions in electrospinning”, J. Appl. Phys., Vol. 87, (2000), pp. 4531–4547. http://dx.doi.org/10.1063/1.373532[Crossref]
  • [7] S. Koombhongse, W.X. Liu and D.H. Reneker: “Flat polymer ribbons and other shapes by electrospinning”, J. Polym. Sci. Pol. Phys., Vol. 39, (2001), pp. 2598–2606. http://dx.doi.org/10.1002/polb.10015[Crossref]
  • [8] S.A. Angadjivand, M.G. Schwartz, P.D. Eitzman and M.E. Jones: Method and apparatus for making a nonwoven fibrous electret web from free-fiber and polar liquid, US 6375886.
  • [9] E.D. Boland, G.E. Wnek, D.G. Simpson, K.J. Palowski and G.L. Bowlin: “Tailoring Tissue Engineering Scaffolds by Employing Electrostatic Processing Techniques: A Study of Poly (Glycolic Acid)”, J. Macromol. Sci. Pur., Vol. A38, (2001), pp. 1231–1238. http://dx.doi.org/10.1081/MA-100108380[Crossref]
  • [10] L. Larondo and R.St. John Manley: “Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties”, J. Polym. Sci. Pol. Phys., Vol. 19, (1981), pp. 909–920. http://dx.doi.org/10.1002/pol.1981.180190601[Crossref]
  • [11] O. Jirsák, F. Sanetrník, D. Lukáš, V. Kotek, L. Martinová and J. Chaloupek: Způsob výroby nanovláken z polymerního roztoku elektrostatickým zvlákňováním a zařízení k provádění způsobu, CZ 294274 (B6), WO 2005024101.
  • [12] B. Dvořánková, Z. Holíková, J. Vacík, R. Konigová, Z. Kapounková, J. Michálek, M. Přádný and K. Smetana: “Reconstruction of epidermis by grafting of keratinocytes cultured on polymer support - clinical study”, Int. J. Dermatol., Vol. 42, (2003), pp. 219–223. http://dx.doi.org/10.1046/j.1365-4362.2003.01792.x[Crossref]
  • [13] J. Vacík, B. Dvořánková, J. Michálek, M. Přádný, E. Krumbholcová, T. Fenclová and K. Smetana: “Cultivation of human keratinocytes without feeder cells on polymer carriers containing ethoxyethyl methacrylate - in vitro study”, J. Mater. Sci-Mater. M., in press. [WoS]
  • [14] M. Přádný, P. Lesný, J. Fiala, J. Vacík, M. Šlouf, J. Michálek and E. Syková: “Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 1. Copolymers of 2-hydroxyethyl methacrylate with methacrylic acid”, Collect. Czech. Chem. C., Vol. 68, (2003), pp. 812–822. http://dx.doi.org/10.1135/cccc20030812[Crossref]
  • [15] M. Přádný, P. Lesný, K. Smetana, J. Vacík, M. Šlouf, J. Michálek and E. Syková: “Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 2. Copolymers with positive and negative charges, polyelectrolyte complexes”, J. Mater. Sci-Mater. M., Vol. 16, (2005), pp. 767–773. http://dx.doi.org/10.1007/s10856-005-2615-4[Crossref]
  • [16] J. Michálek, M. Přádný, A. Artyukhov, M. Šlouf, J. Vacík and K. Smetana Jr.: “Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 3. Hydrogels as carriers for immobilization of proteins”, J. Mater. Sci-Mater. M., Vol. 16, (2005), pp. 783–786. http://dx.doi.org/10.1007/s10856-005-2617-2[Crossref]
  • [17] M. Přádný, J. Michálek, P. Lesný, A. Hejčl, J. Vacík, M. Šlouf and E. Syková: “Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 5: Hydrolytically degradable materials”, J. Mater. Sci-Mater. M., Vol. 17, (2006), pp. 1357–1364. http://dx.doi.org/10.1007/s10856-006-0611-y[Crossref]
  • [18] X. Wang, S. Yang, C. Drew, L. A. Samuelson and J. Kumar: “Reactive electrospinning of hydrogel nanofibers”, Polymer Preprints No. 2, Vol. 44, (2003), pp. 108–109.
  • [19] S.H. Kim, R.E. Green and S.H. Kim: “Reactive electrospinning of 2-hydroxyethyl methacrylate”, PMSE preprints, Vol. 91, (2004), pp. 527–528.
  • [20] S.H. Kim, S.H. Kim, S. Nair and E. Moore: “Reactive Electrospinning of Cross-Linked Poly(2-hydroxyethyl methacrylate) Nanofibers and Elastic Properties of Individual Hydrogel Nanofibers in Aqueous Solutions”, Macromolecules, Vol. 38, (2005), pp. 3719–3723. http://dx.doi.org/10.1021/ma050308g[Crossref]
  • [21] J. Ma, B. Liang, P. Cui, H. Dai and R. Huang: “Dilute solution properties of hydrophobically associating polyacrylamide: fitted by different equations”, Polymer, Vol. 44, (2003), pp. 1281–1286. http://dx.doi.org/10.1016/S0032-3861(02)00851-0[Crossref]
  • [22] B. L. Hager and G. C. Berry: “Moderately concentrated solutions of polystyrene. I. Viscosity as a function of concentration, temperature, and molecular weight”, J. Polym. Sci. Pol. Phys., Vol. 20, (1982), pp. 911–928. http://dx.doi.org/10.1002/pol.1982.180200513[Crossref]
  • [23] P. Gupta, C. Elkins, T.E. Long and G.L. Wilkes: “Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent”, Polymer, Vol. 46, (2005), pp. 4799–4810.
  • [24] B. Vollmert: Grundriss der makromolekularen Chemie, Springer-Verlag, Berlin, 1962, pp. 390–410.
  • [25] Y. Fang, C.X. Ma, Q. Chen and X.B. Lu: “Radiation-induced graft copolymerization of 2-hydroxyethyl methacrylate onto chloroprene rubber membrane. II. Characterization of grafting copolymer”, J. Appl. Polym. Sci., Vol. 68B, (1998), pp. 1745–1750. http://dx.doi.org/10.1002/(SICI)1097-4628(19980613)68:11<1745::AID-APP4>3.0.CO;2-J[Crossref]
  • [26] L. Martinová: “10th International Conference STRUTEX”, Liberec, Czech Republic 2003.
  • [27] P. Lesný, M. Přádný, L. Martinová, J. Michálek, O. Jirsák and E. Syková: Biomaterial on the base of nanofibers, Patent application PV 2007-54.
  • [28] S.L. Shenoy, W.D. Bates, H.L. Frisch and G.E. Wnek: “Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, nonspecific polymer-polymer interaction limit”, Polymer, Vol. 46, (2005), pp. 3372–3384. http://dx.doi.org/10.1016/j.polymer.2005.03.011[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11532-007-0021-0
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.