Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2007 | 5 | 2 | 479-495

Article title

Proposal for a mercury isolation procedure using cold vapor method in combination with voltammetric determination using a rotating gold electrode


Title variants

Languages of publication



The optimal process of pre-treatment and activation of gold rotating disc electrode (AuRDE) before voltammetric determination of mercury is proposed. This treatment encompasses polishing of the electrode surface, electrochemical cycling, and activation. This procedure both increases determination sensitivity as well as improves determination reproducibility. The detection limit on the working electrode achieved using this approach amounted to 8.26·10−10 mol L−1for direct mercury determination in water solution (applying 200 s running accumulation). The procedure of the quantitative mercury isolation from complicated sample matrix was developed as well. It provides better selectivity and significant increase of sensitivity of mercury determination. In case of mercury isolation from one liter of water the detection limit is 6.23·10−11 mol L−1 (analyzing a greater sample volume the determined concentration could be lower). [...]










Physical description


1 - 6 - 2007
26 - 1 - 2007


  • Department of Environment Protection, University of Pardubice, Doubravice 41, 533 53, Pardubice, Czech Republic
  • Department of Environment Protection, University of Pardubice, Doubravice 41, 533 53, Pardubice, Czech Republic
  • Department of Environment Protection, University of Pardubice, Doubravice 41, 533 53, Pardubice, Czech Republic


  • [1] H. Remy: Inorganic chemistry, II. SNTL, Prague, 1971.
  • [2] D.L. Tsalev and P.B. Mandjukov: “Electrothermal atomic-absorption spectrophotometric determination of hydride-forming elements after simultaneous preconcentrations by hydride generation and tramping hydrides in cerium(IV) potassium-iodide absorbing solution”, Microchem. J., Vol. 35(1), (1987), pp. 83–93. http://dx.doi.org/10.1016/0026-265X(87)90202-5[Crossref]
  • [3] R.F. Bendl, J.T. Madden, A.L. Regan and N. Fitzgerald: “Mercury determination by cold vapor absorption spectrometry utilizing UV photoreduction”, Talanta, Vol. 68, (2006), pp. 1366–1370. http://dx.doi.org/10.1016/j.talanta.2005.07.061[Crossref]
  • [4] J.L. Capelo, C. Maduro and A.M. Mota: “Evaluation of focused ultrasound and ozonolysis as sample treatment for determination of mercury by FI-CV-AAS. Optimization of parameters by full factorial design”, Ultrason. Sonochem., Vol. 13, (2006), pp. 98–106. http://dx.doi.org/10.1016/j.ultsonch.2004.09.002[Crossref]
  • [5] G.P. Brandao, R.C. Campos, Luna A.S.: „Determination of mercury in gasoline by cold vapor atomic absorption spectrometry with direct reduction in microemulsion media”. Spectrochim. Acta B, Vol. 60, (2005), pp. 625–631. http://dx.doi.org/10.1016/j.sab.2005.02.026[Crossref]
  • [6] R.B. Voegborlo and H. Akagi: “Determination of mercury in fish by cold vapour atomic absorption spectrometry using an automatic mercury analyzer”, Food Chem., (2006), in press.
  • [7] J.J.B. Nevado, R.C.R. Martín-Doimeadios, F.J.G. Bernardo and M.J. Moreno: “Determination of mercury species in fish reference material by gas chromatographyatomic fluorescence detection after closed-vessel microwave-assisted extraction”, J. Chromatogr. A, Vol. 1093, (2005), pp. 21–28. http://dx.doi.org/10.1016/j.chroma.2005.07.054[Crossref]
  • [8] J. Munoz, M. Gallego and M. Valcárcel: “Speciation analysis of mercury and tin compounds in water and sediments by gas chromatography-mass spectrometry following preconcentration on C60 fullerene”, Anal. Chim. Acta, Vol. 548, (2005), pp. 66–72. http://dx.doi.org/10.1016/j.aca.2005.05.062[Crossref]
  • [9] B. Palenzuela, L. Manganiello, A. Ríos and M. Valcárcel: “Monitoring inorganic mercury and methylmercury species with liquid chromatography-piezoelectric detection”, Anal. Chim. Acta, Vol. 511, (2004), pp. 289–294. http://dx.doi.org/10.1016/j.aca.2004.02.007[Crossref]
  • [10] C. Páger and A. Gáspár: “Possibilities of determination of mercury compounds using capillary zone electrophoresis”, Microchem. J., Vol. 73, (2002), pp. 53–58. http://dx.doi.org/10.1016/S0026-265X(02)00050-4[Crossref]
  • [11] Y. Guo and A.R. Guadalupe: “Preconcentration and voltammetry of mercury on a functionalized sol-gel thin film modified glassy carbon electrode”, J. Pharm. Biomed. Anal., Vol. 19, (1999), pp. 175–181. http://dx.doi.org/10.1016/S0731-7085(98)00133-2[Crossref]
  • [12] S. Meyer and F. Scholz: “Determination of inorganic ionic mercury down to 5×10−14 mol 1−1 by differential pulse anodic stripping voltammetry” Fresenius J. Anal. Chem., Vol. 356, (1996), pp. 247–252.
  • [13] I. Turyan and D. Mandler: “Electrochemical determination of ultralow levels (less-than 10(-12)-M) of mercury by anodic-stripping voltammetry using chemicallymodified electrode”, Electroanalysis, Vol. 6, (1994), pp. 838–843. http://dx.doi.org/10.1002/elan.1140061005[Crossref]
  • [14] P. Hernandez, E. Alda and L. Hernandez: “Determination of mercury(II) using a modified electrode with zeolite”, Anal. Chem., Vol. 327, (1987), pp. 676–678. http://dx.doi.org/10.1007/BF00489160[Crossref]
  • [15] X. Cai, K. Kalcher, W. Diewald, C. Neuhodl and R.J. Magee: “Voltammetric determination of trace amounts of mercury with a carbon paste electrode modified with an anion-exchanger”, Fresenius J. Anal. Chem., Vol. 345, (1993), pp. 25–31. http://dx.doi.org/10.1007/BF00323321[Crossref]
  • [16] J. Labuda and V. Plaskám: “Determination of mercury ions on a diphenylcarbazone bulk modified graphite electrode”, Anal. Chim. Acta, Vol. 228, (1990), pp. 259–263. http://dx.doi.org/10.1016/S0003-2670(00)80502-4[Crossref]
  • [17] S.K. Cha, B.K. Ahn, J. Hwang and H.D. Abruna: “Determination of mercury at electrodes modified with polymeric films of [RU(V-BPY)3](2+) incorporating aminoacids”, Anal. Chem., Vol. 65, (1993), pp. 1564–1569. http://dx.doi.org/10.1021/ac00059a014[Crossref]
  • [18] Z. Navrátilová: “Hg(II) voltammetry on a 1,5-diphenylcarbazide containing karbon paste electrode”, Electroanalysis, Vol. 3, (1991), pp. 799–802. http://dx.doi.org/10.1002/elan.1140030813[Crossref]
  • [19] Z.Q. Zhang, H. Liu, H. Zhang and Y.F. Li: “Simultaneous cathodic stripping voltammetric determination of mercury, cobalt, nickel and palladium by mixed binder Carbon paste electrode containing dimethylglyoxime”, Anal. Chim. Acta, Vol. 333, (1996), pp. 119–124. http://dx.doi.org/10.1016/0003-2670(96)00241-3[Crossref]
  • [20] N.Y. Stojko, K.Z. Brainina, C. Faller and G. Henze: “Stripping voltammetric determination of mercury at modified solid electrodes. I. Development of the modified electrodes”, Anal. Chim. Acta, Vol. 371, (1998), pp. 145–153. http://dx.doi.org/10.1016/S0003-2670(98)00370-5[Crossref]
  • [21] C. Faller, N.Y. Stojko, G. Henze and K.Z. Brainina: “Stripping voltammetric determination of mercury at modigied solid electrodes. Determination of mercury trace using PDC/Au(III) modified electrodes”, Anal. Chim. Acta, Vol. 396, (1999), pp. 195–202. http://dx.doi.org/10.1016/S0003-2670(99)00434-1[Crossref]
  • [22] J.M. Pinilla, L. Hernandey and A.J. Finesa: “Determination of mercury by open circuit adsorption stripping voltammetry on a platinum disk electrode”, Anal. Chim. Acta, Vol. 319, (1996), pp. 25–30. http://dx.doi.org/10.1016/0003-2670(95)00469-6[Crossref]
  • [23] W.L. Clevenger, B.W. Smith and J.D. Winefordner: „Trace determination of mercury: A review”, Crit. Rev. Anal. Chem., Vol. 27, (1997), pp. 1–26.
  • [24] F. Sholz, L. Nitschke and G. Henrion: “Determination of mercury traces by differential-pulse stripping voltammetry after sorption of mercury vapour on a gold-plated electrode”, Anal. Chim. Acta, Vol. 199, (1987), pp. 167–171. http://dx.doi.org/10.1016/S0003-2670(00)82809-3[Crossref]
  • [25] D. Sancho, L. Debán, F. Barbora, R. Pardo and M. Vega: “Determination of mercury in refined beet sugar by anodic stripping voltammetry without sample pretreatment”, Food Chem., Vol. 74, (2001), pp. 527–531. http://dx.doi.org/10.1016/S0308-8146(01)00177-7[Crossref]
  • [26] T. Navrátil, M. Kopanica and J. Krista: “Anodic stripping voltammetry for arsenic determination on composite gold electrode”, Chem. Anal. (Warsaw), Vol. 48, (2003), pp. 265–272.
  • [27] Y. Bonfil, M. Brand and E. Kirowa-Eisner: “Trace determination of mercury by anodic stripping voltammetry at the rotating gold electrode”, Anal. Chim. Acta, Vol. 424, (2000), pp. 65–76. http://dx.doi.org/10.1016/S0003-2670(00)01074-6[Crossref]
  • [28] Y. Bonfil, E. Brand and E. Kirowa-Eisner: “Determination of sub-mu g 1−1 concentrations of copper by anodic stripping voltammetry at the gold electrode”, Anal. Chim. Acta, Vol. 387, (1999), pp. 85–95. http://dx.doi.org/10.1016/S0003-2670(99)00066-5[Crossref]
  • [29] M. Rievaj, S. Nezaros and D. Bustin: “Gold fiber microelectrode - Application in trace analysis of arsenic and mercury in water”, Chem. Pap. - Chemicke Zvesti, Vol. 48, (1994), pp. 91–94.
  • [30] M. Meloun, J. Militký and M. Forina: Linear Regression Models. Chemometrics for Analytical Chemistry. PC-Aided Regression and Related Methods, Ellis Horwod, Chichester, 1992.
  • [31] P. Pitter: Látky vyskytující se převážně jako neelektrolyty, Hydrochemie, SNTL, Praha, 1990, pp. 304–306.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.