Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2007 | 5 | 2 | 466-478

Article title

Sub-millivolt amplitude potential oscillations observed in the noise of hydrogen evolution on Ag and Cu microelectrodes


Title variants

Languages of publication



A strange effect was observed while using the method of quasi-simultaneous determination of electrochemical voltage noise and impedance to obtain information on the kinetics of the hydrogen evolution reaction on Ag and Cu microelectrodes. Beyond a certain polarizing current density we found microvolt-amplitude potential oscillations on both electrodes with a frequency in the 5 Hz–5 kHz range. The oscillations were observed in every single experiment with Ag and Cu, while no oscillatory behavior was observed during the control experiments with the Pt microelectrode. The presence of the oscillations indicates that the mechanism of hydrogen evolution is more complex compared to the original assumption. [...]










Physical description


1 - 6 - 2007
23 - 1 - 2007


  • Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Science, H-1025, Budapest, Pusztaszeri út 59-67, Hungary
  • Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Science, H-1025, Budapest, Pusztaszeri út 59-67, Hungary
  • Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Science, H-1025, Budapest, Pusztaszeri út 59-67, Hungary


  • [1] A. Van der Ziel: Fluctuation Phenomena in Semiconductors, Butterworth Scientific Publications, London, London, 1959. _
  • [2] G. Mészáros, I. Szenes and B. Lengyel: “Measurement of charge transfer noise”, Electrochem. Commun., Vol. 6, (2004), pp. 1185–1191. http://dx.doi.org/10.1016/j.elecom.2004.09.017[Crossref]
  • [3] R. Parsons: “Electrode reaction orders, transfer coefficients and rate constants - Amplifications of definitions and recommendations for publications of parameters”, Electrochim. Acta, Vol. 26, (1981), pp. 1867–1874. http://dx.doi.org/10.1016/0013-4686(81)85177-8[Crossref]
  • [4] E. Kirowa-Eisner, M. Schwarz and E. Gileadi: “The temperature-dependence of the Tafel slop .1. Instrumentation, calibration and a study of the reduction of hydroxylamine on the dme”, Electrochim. Acta, Vol. 34, (1989), pp. 1103–1111. http://dx.doi.org/10.1016/0013-4686(89)87142-7[Crossref]
  • [5] J. O’M. Bockris, I.A. Ammar and A.K.M.S. Huq: “The mechanism of the hydrogen evolutio reaction on Platinum silver and tungsten surfaces in acid solutions”, J. Phys. Chem., Vol. 61, (1957), pp. 879–886. http://dx.doi.org/10.1021/j150553a008[Crossref]
  • [6] S. Trasatti: “Work function, electronegativity, and electrochemical behavior of metals .3. Electrolytic hydrogen evolution in acid solutions”, J. Electroanal. Chem., Vol. 39(1), (1972), pp. 163–184. http://dx.doi.org/10.1016/S0022-0728(72)80485-6[Crossref]
  • [7] L.I. Krishtalik: “Hydrogen Overvoltage and Adsorption Phenomena. Part III. Effect of the Adsorption Energy of Hydrogen on Overvoltage and the Mechanism of the Cathodic Process”, In: P. Delahay and C.W. Tobias (Eds.): Advances in Electrochemistry and Electrochemical Engineering, Vol. 7, Interscience Publishers, New York, 1970.
  • [8] K. Szabó and A. Sulyok: “Electrochemical studies at low temperatures .9. Barrierless mechanism of hydrogen evolution on Ag and Cu electrodes”, Magy. Kém. Foly., Vol. 103, (1997), pp. 381–386.
  • [9] R. Córdova, M.E. Martins and A.J. Arvia: “The Activation of Polycrystalline Gold to the Hydrogen Electrode Reaction Promoted with Repetitive Potentiodynamic Perturbations”, J. Electrochem.Soc., Vol. 127, (1980), pp. 2628–2634. http://dx.doi.org/10.1149/1.2129533[Crossref]
  • [10] D. Eberhardt, E. Santos and W. Schmickler: “Hydrogen evolution on silver single crystal electrodes-first results”, J. Electroanal. Chem., Vol. 461, (1999), pp. 76–79. http://dx.doi.org/10.1016/S0022-0728(98)00093-X[Crossref]
  • [11] K.J. Vetter: Electrochemical kinetics, Academic Press, New York London, 1967.
  • [12] A. Lasia: “Application of Electrochemical Impedance Spectroscopy to Hydrogen Adsorption, Evolution and Absorption into Metals”, In: B.E. Conway and R.E. White (Eds.): Modern Aspects of Electrochemistry, Vol. 35, Kluwer/Plenum, New York, 2002.
  • [13] D.A. Harrington and B.E. Conway: “ac Impedance of Faradaic reactions involving electrosorbed intermediates-I. Kinetic theory”, Electrochim. Acta, Vol. 32, (1987), pp. 1703–1712. http://dx.doi.org/10.1016/0013-4686(87)80005-1[Crossref]
  • [14] J. Woitowicz: “Oscillatory Behaviour in Electrochemical systems”, In: O’M. Bockris and B.E. Conway (Eds.): Modern aspects of Electrochemistry, Vol. 8, J. Butterworth, London, 1972.
  • [15] G. Horányi and Cs. Visy: “Potential oscillations in the course of galvanostatic oxidation of hydrogen at platinum electrode in the presence of electrosorbing cations”, J. Electroanal. Chem., Vol. 103(3), (1979), pp. 353–361. http://dx.doi.org/10.1016/S0022-0728(79)80359-9[Crossref]
  • [16] M.N. Hull and F.A. Lewis: “Fluctuations of overpotential at metal cathodes and changes in surface concentration of hydrogen atoms”, Trans. Faraday. Soc., Vol. 64, (1968), pp. 2472–2475. http://dx.doi.org/10.1039/tf9686402472[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.