Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2007 | 5 | 1 | 55-70

Article title

DFT and neutron diffraction study of 1,6-anhydro-β-D-glucopyranose (levoglucosan)


Title variants

Languages of publication



Geometries of 27 generated conformers of levoglucosan were optimized in vacuo at DFT level of theory combining several functionals with high quality basis sets. For the sake of comparison a reference molecular and crystal geometry obtained from 30 K single crystal neutron diffraction data was used. Analysis of the conformers’ geometries revealed that in all stable conformers intramolecular two-or three centre hydrogen bonds were formed. Relative energy of the conformer, which approximated the molecule in the crystal structure the most, was only ∼3 kcal/mol higher, than the energy of the most stable conformer in vacuo. The largest discrepancies between the geometries calculated in vacuo and experimental geometry concentrated in the vicinity of anomeric C1. These differences were reduced by involving O1 to intermolecular hydrogen bond using a simple model of the respective hydrogen bond in the crystal. [...]










Physical description


1 - 3 - 2007
1 - 3 - 2007


  • Institute of Inorganic Chemistry, Slovak Academy of Sciences, SK-845 36, Bratislava, Slovak Republic
  • Institute of Inorganic Chemistry, Slovak Academy of Sciences, SK-845 36, Bratislava, Slovak Republic
  • Institute of Inorganic Chemistry, Slovak Academy of Sciences, SK-845 36, Bratislava, Slovak Republic
  • Institutionen för materialkemi, Uppsala Universitet, Box 538, 751 21, Uppsala, Sweden


  • [1] R.B. Ward, R.L. Whistler, M. L. Wolfrom and J.M. BeMiller (Eds.): Methods in Carbohydrate Chemistry, Academic Press, New York, 1963, pp. 394–396.
  • [2] M. Gander, K.M. Rapp and H. Schiweck: Process for preparing 1,6-beta-D-anhydroglucopyranose (levoglucosan) in high purity, US Pat., 5 023 330, 1991.
  • [3] M. Cerny and J. Stanek: “1,6-Anhydro derivatives of aldohexoses”, Adv. Carbohydr. Chem. Biochem., Vol. 34, (1977), pp. 23–177. http://dx.doi.org/10.1016/S0065-2318(08)60324-8[Crossref]
  • [4] J.S. Carvalho, W. Prins and C. Schuerch: “Addition polymerization of anhydrosugar derivatives. I. A Polyanhydroglucose”, J. Amer. Chem. Soc., Vol. 81, (1959), pp. 4054–4058. http://dx.doi.org/10.1021/ja01524a060[Crossref]
  • [5] C.D. Simpson, R.L. Dills, B.S. Katz and D.A. Kalman: “Determination of levoglucosan in atmospheric fine particulate”, J. Air & Waste Management Association, Vol. 54, (2004), pp. 689–694.
  • [6] G. Scholnik, A.H. Falkovich, Y. Rudich, W. Maenhaut and P. Artaxo: “New analytical method for the determination of levoglucosan, polyhydroxy compounds, and 2-methylerythritol and its application to smoke and rainwater samples”, Environ. Sci. Technol., Vol. 29, (2005), pp. 2744–2752. http://dx.doi.org/10.1021/es048363c
  • [7] Y.J. Park, H.S. Kim and G.A. Jeffrey: “The crystal structure of 1,6-Anhydro-β-D-glucopyranose”, Acta Cryst. B, Vol. 27, (1971), pp. 220–227. http://dx.doi.org/10.1107/S0567740871001936[Crossref]
  • [8] C. Ceccarelli, G.A. Jeffrey and R. Taylor: “A survey of O-H...O hydrogen bond geometries determined by neutron diffraction”, J. Molecular Struct., Vol. 70, (1981), pp. 255–271. http://dx.doi.org/10.1016/0022-2860(81)80112-3[Crossref]
  • [9] G.A. Jeffrey and J. Mitra: “The hydrogen-bondong patterns in the pyranose and pyranoside crystal structures”, Acta Cryst. B, Vol. 39, (1983), pp. 469–480. http://dx.doi.org/10.1107/S0108768183002748[Crossref]
  • [10] T. Steiner and W. Saenger: “Geometry of C-H...O hydrogen bonds in carbohydrate crystal structures. Analysis of neutron diffraction data” J. Am. Chem. Soc., Vol. 114, (1992), pp. 10146–10154. http://dx.doi.org/10.1021/ja00052a009[Crossref]
  • [11] G.I. Csonka, K. Elias and I.G. Csizmadia: “Ab initio and density functional study of the conformational space of 1C4α-L-fucose”, J. Comput. Chem., Vol. 18, (1997), pp. 330–342. http://dx.doi.org/10.1002/(SICI)1096-987X(199702)18:3<330::AID-JCC4>3.0.CO;2-V
  • [12] A.G. Evdokimov, A.J. Kalb, T.F. Koetzle, W.T. Klooster and J.M.L. Martin: “Structures of furanosides: density functional calculations and high-resolution x-ray and neutron diffraction crystal structures”, J. Phys. Chem. A, Vol. 103 (1999), pp. 744–753. http://dx.doi.org/10.1021/jp9837840[Crossref]
  • [13] A.G. Evdokimov, J.M.L. Martin and A.J. Kalb: “Structures of furanosides: A study of the conformational space of methyl a-D-lyxofuranoside by density functional methods”, J. Phys. Chem. A, Vol. 104, (2000), pp. 5291–5297. http://dx.doi.org/10.1021/jp9931612[Crossref]
  • [14] J.R. Kneisler and N.L. Allinger: “Ab initio and density functional theory study of structures and energies for dimethoxymethane as a model for the anomeric effect”, J. Comput. Chem., Vol. 17, (1996), pp. 757–766. http://dx.doi.org/10.1002/(SICI)1096-987X(199605)17:7<757::AID-JCC1>3.0.CO;2-R[Crossref]
  • [15] G.I. Csonka, K. Elias, I. Kolossvary, C.P. Sosa and I.G. Csizmadia: “Theoretical study of alternative ring forms of α-L-fucopyranose”, J. Phys. Chem. A, Vol. 102, (1998), pp. 1219–1229. http://dx.doi.org/10.1021/jp973320m[Crossref]
  • [16] A.D.J. Becke: “Density-functional thermochemistry. III. The role of exact exchange”, J. Chem. Phys., Vol. 98, (1993), pp. 5648–5652. http://dx.doi.org/10.1063/1.464913[Crossref]
  • [17] S.E. Barrows, F.J. Dulles, C.J. Cramer, A.D. French, and D.G. Truhlar: “Relative stability of alternative chair forms and hydroxymethyl conformations of β-D-glucopyranose”, Carbohyd. Res., Vol. 276, (1995), pp. 219–251. http://dx.doi.org/10.1016/0008-6215(95)00175-S[Crossref]
  • [18] R. Ditchfield, W.J. Hehre and J.A. Pople: “Self-consistent molecular-orbital methods. IX. An extended gaussian-type basis for molecular-orbital studies of organic molecules”, J. Chem. Phys., Vol. 54, (1971), pp. 724–728. http://dx.doi.org/10.1063/1.1674902[Crossref]
  • [19] T. Clark, J. Chandrasekhar, G.W. Spitznagel and P.v.R. Schleyer: “Efficient diffuse function-augmented basis sets for anion calculations”, J. Comp. Chem., Vol. 4, (1983), pp. 294–301. http://dx.doi.org/10.1002/jcc.540040303[Crossref]
  • [20] G.J. Csonka, K. Elias and I.G. Csizmadia: “Relative stability of 1C4 and 4C1 chair forms of β-D-glucose: a density functional study”, Chem. Phys. Lett., Vol. 257, (1996), pp. 49–60. http://dx.doi.org/10.1016/0009-2614(96)00508-8[Crossref]
  • [21] D.E. Woon and T.H. Dunning Jr.: “Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon”, J. Chem. Phys., Vol. 98 (1993), pp. 1358–1371. http://dx.doi.org/10.1063/1.464303[Crossref]
  • [22] E.R. Davidson: “Comment on’ Comment on Dunning’ss correlation-consistent basis sets’”, Chem. Phys. Lett., Vol. 260, (1996), pp. 514–518. http://dx.doi.org/10.1016/0009-2614(96)00917-7[Crossref]
  • [23] C. Adamo and V.J. Barone: “Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models”, J. Chem. Phys., Vol. 108, (1999), pp. 664–675. http://dx.doi.org/10.1063/1.475428[Crossref]
  • [24] A.J. Sadlej: “Medium-size polarized basis-sets for high level correlated calculations of molecular electric properties”, Collec. Czech. Chem. Commun., Vol. 53, (1988), pp. 1995–2016. http://dx.doi.org/10.1135/cccc19881995[Crossref]
  • [25] A.J. Sadlej and M. Urban: “Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties. III Alkali (Li, Na, K, Rb) and alkaline-earth (Be, Mg, Ca, Sr) atoms”, J. Mol. Struct., Vol. 234, (1991), pp. 147–171. http://dx.doi.org/10.1016/0166-1280(91)89010-X[Crossref]
  • [26] J.M.L. Martin: “Some observations and case studies on basis set convergence in density functional theory”, In: P. Geerlings, e.a. (Eds.): Density functional theory: a bridge between chemistry and physics, VUBPress, Brussels, 1999.
  • [27] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J.J. Dannenberg, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J.J. Dannenberg, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle, and J.A. Pople, GAUSSIAN 98, Gaussian, Inc., Pittsburgh PA, 2001.
  • [28] A.A. Granovsky: http://classic.chem.msu.su/gran/gamess/index.html.
  • [29] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T.L. Windus, M. Dupuis and J.A. Montgomery: “General atomic and molecular electronic structure system”, J. Comput. Chem., Vol. 14, (1993), pp. 1347–1363. http://dx.doi.org/10.1002/jcc.540141112[Crossref]
  • [30] W.J. Hehre, L. Radom, P.v.R. Schleyer and J.A. Pople: Ab Initio Molecular Orbital Theory, John Wiley & Sons, New York, 1986.
  • [31] R.U. Lemieux: Molecular Rearrangements, P. de Mayo, Interscience, New York, 1964.
  • [32] R.U. Lemieux, A.A. Pavia, J.C. Martin and K.A. Watanabe: “Solvation effects on conformational equilibria. Studies related to the conformational properties of 2-methoxytetrahydropyran and related methyl glycopyranosides”, Can. J. Chem., Vol. 47, (1969), pp. 4427–2239. http://dx.doi.org/10.1139/v69-731[Crossref]
  • [33] I. Tvaroska: Theoretical Chemistry of Biological Systems, G. Naray-Szabo, Elsevier, Amsterdam, 1986.
  • [34] L. Schliefer, H. Senderowitz, P. Aped, E. Tartakovsky, and B. Fuchs: “Diagnostic structural criteria for the anomeric effect in carbohydrates and inferences of general sifnificance on their scope and limitations”, Carbohydr. Res., Vol. 206, (1990), pp. 21–39. http://dx.doi.org/10.1016/0008-6215(90)84003-D[Crossref]
  • [35] K. Brandendurg: Diamond. Version 2.1.d, Crystal Impact GbR, Bonn, Germany, 2000.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.