Preferences help
enabled [disable] Abstract
Number of results
2006 | 4 | 4 | 646-665
Article title

Hybrid density functional theory investigation of a series of alloxan-based thiosemicarbazones and semicarbazones

Title variants
Languages of publication
Recently, the synthesis and the NMR characterization of a series of eight alloxan-based thiosemicarbazones and semicarbazones were reported. These compounds exhibit a strongly hydrogenbonded hydrazinic proton that is a part of a characteristic six-membered ring. This proton is highly deshielded and resonates far downfield in the proton NMR spectra. In this report, mPW1PW91/6-31+G(d,p) calculations have been used to investigate the structure and other molecular properties of this series of eight compounds. The relationship between the 1H and 13C NMR chemical shifts and various geometric parameters was investigated, and linear relationships for proton peaks that are involved in hydrogen-bond interactions were found.
Physical description
1 - 12 - 2006
1 - 12 - 2006
  • [1] S. Padhye and G.B. Kauffman: “Transition metal complexes of semicarbazones and thiosemicarbazones”, Coord. Chem. Rev., Vol. 63, (1985), pp. 127–160.[Crossref]
  • [2] D.X. West, S.B. Padhye and P.B. Sonawane: “Structural and physical correlations in the biological properties of transition metal heterocyclic thiosemicarbazone and S-alkyl dithiocarbazate complexes”, Struct. Bonding, Vol. 76, (1991), pp. 1–50.
  • [3] D.X. West, A.E. Liberta, S.B. Padhye, R.C. Chikate, P.B. Sonawane, A.S. Kumbhar and R.G. Yerande: “Thiosemicarbazone complexes of copper(II): structural and biological studies”, Coord. Chem. Rev., Vol. 123, (1993), pp. 49–71.[Crossref]
  • [4] T. Varadinova, D. Kovala-Demertzi, M. Rupelieva, M. Demertzis and P. Genova: “Antiviral activity of platinum (II) and palladium (II) complexes of pyridine-2-carbaldehyde thiosemicarbazone”, Acta Virol., Vol. 45, (2001), pp. 87–94.
  • [5] D. Kovala-Demertzi, M.A. Demertzis, J.R. Miller, C. Papadopoulou, C. Dodorou and G. Filousis: “Platinum(II) complexes with 2-acetylpyridine thiosemicarbazone. Synthesis, crystal structure, spectral properties, antimicrobial and antitumour activity”, J. Inorg. Biochem., Vol. 86, (2001), pp. 555–563.[Crossref]
  • [6] S. Padhye, Z. Afrasiabi, E. Sinn, J. Fok, K. Mehta and N. Rath: “Antitumor metallothiosemicarbazonates: Structure and antitumor activity of palladium complex of phenanthrenequinone thiosemicarbazone”, Inorg. Chem., Vol. 44, (2005), pp. 1154–1156.[Crossref]
  • [7] M.C. Rodriguez-Arguelles, M.B. Ferrari, G.G. Fava, C. Pelizzi, G. Pelosi, R. Albertini, A. Bonati, P.P. Dall’Aglio, P. Lunghi and S. Pinelli: “Acenaphthenequinone thiosemicarbazone and its transition metal complexes: synthesis, structure, and biological activity”, J. Inorg. Biochem., Vol. 66, (1997), pp. 7–17.[Crossref]
  • [8] R.R.A. Abou-Shaaban: “Atom-level electrotopological state indexes of thiourylene-type compounds and their antioxidant/oxidant properties: A novel immunoregulatory-guideline”, Saudi Pharm. J., Vol. 4, (1996), pp. 10–22.
  • [9] H. Yamamoto, Y. Uchigata and H. Okamoto: “DNA strand breaks in pancreatic islets by in vivo administration of alloxan or streptozotocin”, Biochem. Biophys. Res. Commun., Vol. 103, (1981), pp. 1014–1020.[Crossref]
  • [10] H. Okamoto: “Molecular basis of experimental diabetes: degeneration, oncogenesis and regeneration of pancreatic B-cells of islets of Langerhans”, Bio Essays, Vol. 2, (1985), pp. 15–21.
  • [11] N. Takasu, T. Asawa, I. Komiya, Y. Nagasawa and T. Yamada: “Alloxan-induced DNA strand breaks in pancreatic islets. Evidence for hydrogen peroxide as an intermediate”, J. Biol. Chem., Vol. 266, (1991), pp. 2112–2114.
  • [12] H.-W. Rho, J.-N. Lee, H.-R. Kim, B.-H. Park and J.-W. Park: “Protective mechanism of glucose against alloxan-induced b-cell damage: pivotal role of ATP”, Exp. Mol. Med., Vol. 32, (2000), pp. 12–17. [Crossref]
  • [13] J.D. Douros, Jr., M. Brokl and A.F. Kerst: Gates Rubber Co., US 3773952, 1973.
  • [14] J.W. Carter, R. Mayes, K.A. Pierce, R. Lawson and E.C. Lisic: “Structural determination of a series of ortho-quinone thiosemicarbazone compounds using NMR spectroscopy”, J. Und. Chem. Res., Vol. 2, (2003), pp. 73–77.
  • [15] T. Bell, R. Mayes, R. Lawson and E.C. Lisic: “Synthesis of a series of isatin-3-thiosemicarbazone-5-sulfonic acid compounds and structural characterization using NMR spectroscopy”, J. Und. Chem. Res., Vol. 3, (2004), pp. 39–45.
  • [16] E.C. Lisic, R.R. Nareddy, R. Huxford and E.C. Lisic: “Synthesis of a series of isatin-3-thiosemicarbazone-5-sulfonic acid compounds and structural characterization using NMR spectroscopy”, J. Und. Chem. Res., Vol. 5, (2006), pp. 61–66.
  • [17] C. Paiola, R. Cammi, P. Pelagatti and C. Pelizzi: “A density functional theory study of structural and NMR properties of SNN thiosemicarbazone ligands and their Pd(II) chlorocomplexes”, Theochem, Vol. 623, (2003), pp. 105–119.[Crossref]
  • [18] A.M.B. Bastos, A.F.d.C. Alcantara and H. Beraldo: “Structural analyses of 4-benzoylpyridine thiosemicarbazone using NMR techniques and theoretical calculations”, Tetrahedron, Vol. 61, (2005), pp. 7045–7053.[Crossref]
  • [19] H. Yüksek, I. Cakmak, S. Sadi, M. Alkan and H. Baykara: “Synthesis and GIAO NMR calculations for some novel 4-heteroarylidenamino-4,5-dihydro-1H-1,2,4-triazol-5-one derivatives: Comparison of theoretical and experimental 1H-and 13C-chemical shifts”, Int. J. Mol. Sci., Vol. 6, (2005), pp. 219–229.[Crossref]
  • [20] F.F. Jian, P.S. Zhao, Z.S. Bai and L. Zhang: “Quantum chemical calculation studies on 4-phenyl-1-(propan-2-ylidene)thiosemicarbazide”, Struct. Chem., Vol. 16, (2005), pp. 635–639.[Crossref]
  • [21] H. Yüksek, O. Gürsoy, I. Cakmak and M. Alkan: “Synthesis and GIAO NMR calculations for some new 4,5-dihydro-1H-1,2,4-triazol-5-one derivatives: Comparison of theoretical and experimental 1H and 13C chemical shifts”, Magn. Reson. Chem., Vol. 43, (2005), pp. 585–587.[Crossref]
  • [22] C. Adamo and V. Barone: “Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models”, J. Chem. Phys., Vol. 108, (1998), pp. 664–675.[Crossref]
  • [23] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh and C. Fiolhais: “Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation”, Phys. Rev. B, Vol. 46, (1992), pp. 6671–6687.[Crossref]
  • [24] K.B. Wiberg: “Comparison of density functional theory models’ ability to reproduce experimental 13C-NMR shielding values”, J. Comp. Chem., Vol. 20, (1999), pp. 1299–1303.<1299::AID-JCC10>3.0.CO;2-F[Crossref]
  • [25] T.H. Sefzik, D. Turco, R.J. Iuliucci and J.C. Facelli: “Modeling NMR chemical shift: A survey of density functional theory approaches for calculating tensor properties”, J. Phys. Chem. A, Vol. 109, (2005), pp. 1180–1187.[Crossref]
  • [26] H.F. Hameka: “Theory of magnetic properties of molecules, with particular emphasis on the hydrogen molecule”, Rev. Mod. Phys., Vol. 34, (1962), pp. 87–101.[Crossref]
  • [27] R. Ditchfield: “Self-consistent perturbation theory of diamagnetism. I. A gage-invariant LCAO(linear combination of atomic orbitals) method for NMR chemical shifts”, Mol. Phys., Vol. 27, (1974), pp. 789–807.[Crossref]
  • [28] K. Wolinski, J.F. Hinton and P. Pulay: “Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations”, J. Am. Chem. Soc., Vol. 112, (1990), pp. 8251–8260.[Crossref]
  • [29] R.S. Mulliken: “Electronic population analysis on LCAO-MO molecular wave functions. I”, J. Chem. Phys., Vol. 23, (1955), pp. 1833–1840.[Crossref]
  • [30] R.S. Mulliken: “Electronic population analysis on LCAO-MO molecular wave functions. II. Overlap populations, bond orders, and covalent bond energies”, J. Chem. Phys., Vol. 23, (1955), pp. 1841–1846.[Crossref]
  • [31] R.S. Mulliken: “Electronic population analysis on LCAO-MO molecular-wave functions. III. Effects of hybridization on overlap and gross AO populations”, J. Chem. Phys., Vol. 23, (1955), pp. 2338–2342.[Crossref]
  • [32] R.S. Mulliken: “Electronic population analysis on LCAO-MO molecular-wave functions. IV. Bonding and antibonding in LCAO and valence-bond theories”, J. Chem. Phys., Vol. 23, (1955), pp. 2343–2346.[Crossref]
  • [33] J. Cioslowski: “A new population analysis based on atomic polar tensors”, J. Am. Chem. Soc., Vol. 111, (1989), pp. 8333–8336.[Crossref]
  • [34] J. Cioslowski, T. Hamilton, G. Scuseria, B.A. Hess, Jr., J. Hu, L.J. Schaad and M. Dupuis: “Application of the GAPT (generalized atomic polar tensor) population analysis to some organic molecules and transition structures”, J. Am. Chem. Soc., Vol. 112, (1990), pp. 4183–4186.[Crossref]
  • [35] J. Cioslowski, P.J. Hay and J.P. Ritchie: “Charge distributions and effective atomic charges in transition-metal complexes using generalized atomic polar tensors and topological analysis”, J. Phys. Chem., Vol. 94, (1990), pp. 148–151.[Crossref]
  • [36] Gaussian 03, Revision B.02, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J. Montgomery, J. A.;, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.
  • [37] IUPAC names: ALL-TSC = pyrimidine-2,4,5,6(1H,3H)-tetrone 5-thiosemicarbazone, ALL-MTSC = pyrimidine-2,4,5,6(1H,3H)-tetrone 5-(N-methylthiosemicarbazone), ALL-ETSC = pyrimidine-2,4,5,6(1H,3H)-tetrone 5-(N-ethylthiosemicarbazone), ALL-BzTSC = pyrimidine-2,4,5,6(1H,3H)-tetrone 5-(N-benzylthiosemicarbazone), ALL-PTSC = pyrimidine-2,4,5,6(1H,3H)-tetrone 5-(N-phenylthiosemicarbazone), ALL-DMTSC = pyrimidine-2,4,5,6(1H,3H)-tetrone 5-(N,N-dimethylthiosemicarbazone), ALL-SC = pyrimidine-2,4,5,6(1H,3H)-tetrone 5-semicarbazone, and ALL-PSC = pyrimidine-2,4,5,6(1H,3H)-tetrone 5-(N-phenylsemicarbazone).
  • [38] The Supplementary Information includes geometries in Cartesian coordinates, calculated isotropic magnetic shielding tensors, energies, and frequencies for all stationary points optimized in this work and the Mulliken atomic charges for the minimum structures. This material is available upon request from the corresponding author. E-mail your inquiries to
  • [39] D.X. West, A.K. El-Sawaf and G.A. Bain: “Metal complexes of N(4)-substituted analogs of the antiviral drug methisazone {1-methylisatin thiosemicarbazone}”, Transit. Metal Chem., Vol. 23, (1998), pp. 1–6.[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.