Preferences help
enabled [disable] Abstract
Number of results
2006 | 4 | 4 | 666-673
Article title

Thermal decomposition of ammonia. N2H4-an intermediate reaction product

Title variants
Languages of publication
The paper reports the thermal decomposition of ammonia under dynamic conditions at 800°C in a quartz reactor. Its purpose is to confirm the homogeneous-heterogeneous degenerated branched chain mechanism established in previous studies, which assume the formation of N2H4 as a molecular intermediate; this paper identifies hydrazine as a product of thermal decomposition using FT-IR and UV-VIS spectroscopies.
Physical description
1 - 12 - 2006
1 - 12 - 2006
  • [1] C.N. Hinshelwood and R.E. Burk: “The thermal decomposition of ammonia upon various surfaces”, J. Chem. Soc., Vol. 127, (1925), pp. 1105–1117.
  • [2] D.A. Cooper and E.B. Ljungstrom: “Decomposition of NH3 over Quartz Sand at 840–960°C”, Energy & Fuels, Vol. 2, (1988), pp. 716–719.[Crossref]
  • [3] J.C. Ganley, F.S. Thomas, E.G. Seebauer and R.I. Masel: “A priori catalytic activity correlations: the difficult case of hydrogen production from ammonia”, Catal. Lett., Vol. 96, (2004), pp. 117–122.[Crossref]
  • [4] W. Arabczyk and U. Narkiewicz: “A new method for in situ determination of number of active sites in iron catalysts for ammonia synthesis and decomposition”, Appl. Catal., Vol. 196, (2002), pp. 423–426.
  • [5] K.F. Bonhoeffer and L. Farkas: “The interpretation of diffuse molecular spectra. Experiments on the photochemical decomposition of ammonia”, Z. Physik. Chem., Vol. 134, (1928), pp. 337–342.
  • [6] A. Giquel, P. Saillard and N. Laidoni: “Mechanism of catalytic decomposition in an NH3 low pressure plasma”, Rev. Phys. Appl., Vol. 24, (1989), pp. 285–294
  • [7] L. Odochian, L. Dragomir and M. Dumitras: “Thermal decomposition of ammonia. I. Kinetic study under dynamic condition”, Anal. St. Univ. Iasi, S. Ch., Vol. VIII(1), (2000), pp. 15–20.
  • [8] L. Odochian, M Dumitras and D. Dirtu: “Contributii la mecanismul reactiei de descompunere termica a amoniacului II”, Rev. Chim. (Bucuresti), Vol. 56(5), (2005), pp. 485–489.
  • [9] R. Sochet: La cinétique des réactions en chaînes, Dunod, Paris, 1971, pp. 56–59.
  • [10] T. Turanyi, T. Berces and S. Vajda: “Reaction-rate analysis of complex kinetic systems”, Int. J. Chem. Kinet., Vol. 20, (1989), pp. 83–99.[Crossref]
  • [11] J. Ianni: KINTECUS, Windows Version 3.1,, 2003
  • [12] P. Pascal: Nouveau traité de chimie minerale, Vol. 10, Masson, Paris, 1956, pp. 406–408.
  • [13] The National Institute for Occupational Safety and Health (NIOSH): Manual of Analytical Methods, 4th ed., Method number 3503, US Government Printing Office, Washington DC, 1994.
  • [14] Numerical Recipes in Fortran 77: The Art of Scientific Computing, 2nd ed., Vol. 1, W.H. Press, Cambridge Univ. Press, 1997, pp. 406–412.
  • [15] J.R. During, S.F. Bush and E.E. Mercer: “Vibrational spectrum of hydrazine and a Raman study of hydrogen bonding in hydrazine”, The J. Chem. Physics”, Vol. 44(11), (1966), pp. 4238–4247.[Crossref]
  • [16] Z. Mielke and H. Ratajczak: “Normal coordinate analysis of diimide hydrazine and its protonated species”, J. Mol. Struc, Vol. 19, (1973), pp. 751–759.[Crossref]
  • [17] A. Braibanti, F. Dallavalle, M.A. Pellinghelli and E. Leporati: “The nitrogen - nitrogen stretching band in hydrazine derivatives and complexes”, Inorg. Chem., Vol. 7, (1968), pp. 1430–1433.[Crossref]
  • [18] A. Afkhami and A.R. Zarei: “Simultaneous spectrophotometric determination of hydrazine and phenylhydrazine based on their condensation reactions with different aromatic aldehydes in micellar media using H-point standard addition method”, Talanta, Vol. 62, (2004), pp. 559–565.[Crossref]
  • [19] L. Odochian and M. Dumitras: Teoria cineticã si mecanismul reactiilor în lant I. Reactii în lant simplu, Matrix Rom, Bucharest, 2003, pp. 23–25.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.