Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 86 | 4 | 202-210

Article title

Literature Review Concerning Cell and Skin Substitute Cultures Obtained by Means of Tissue Engineering used in the Treatment of Burns

Content

Title variants

Languages of publication

EN

Abstracts

Keywords

Publisher

Year

Volume

86

Issue

4

Pages

202-210

Physical description

Dates

published
1 - 4 - 2014
online
27 - 6 - 2014
received
5 - 5 - 2013

Contributors

  • Center For The Treatment of Burns in Siemianowice Śląskie
author
  • Center For The Treatment of Burns in Siemianowice Śląskie
  • Technical-Humanistic Academy in Bielsko Biała. Faculty of Health Science. Faculty of Emergency Medicine
author
  • Center For The Treatment of Burns in Siemianowice Śląskie
  • Higher School of Applied Sciences in Ruda Śląska. Department of Health
  • Center For The Treatment of Burns in Siemianowice Śląskie
  • Center For The Treatment of Burns in Siemianowice Śląskie
author
  • Center For The Treatment of Burns in Siemianowice Śląskie
author
  • Center For The Treatment of Burns in Siemianowice Śląskie
  • Center of Polymer and Carbon Resources of the Polish Academy of Science in Zabrze
  • Chair and Department of General, Molecular, and Genetic Biology, Silesian Medical University in Katowice

References

  • 1. T ruong ATN, Kowal-Vern A, Latenser A et al.: Comparison of dermal substitutes in wound healing utilizing a nude mouse model. J Burns and Wounds 2005;4: p. e4.
  • 2. Castagnoli C, Fumagalli M, Alotto D et al.: Preparation and Characterization of a novel skin substitutes. J Biomed Biotechnol 2010; art. Id 840363; 112-33.
  • 3. K ellouche S et al.: Tissue engineering for fullthickness burns; a dermal substitute from bench to bedside. Biochem Biophys Res Commun 2007; 363: 472-78.
  • 4. Simpson DG: Dermal templates and woundhealing paradigm: the promise of tissue regeneration. Expert Rev Med Devices 2006; 3(4): 471-84.[Crossref]
  • 5. Metcalfe AD, Ferguson MW: Tissue engineering of replacement skin; the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J Royal Soc Interface 2007; 4(14): 413-37.[Crossref]
  • 6. K amolz LP, Lumeta et al.: Dermal replacements in General, Burn and Plastic Surgery. Tissue engineering in clinical practice. Springer Verlag, Vien 2013; 13-26, 27-42, 97-120.
  • 7. A mable G, Meissner A: Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends Mol Med 2009; 15(2): 59-68.
  • 8. I kada Y: Challenges in tissue engineering. J.R. Soc. Interface 2006; 3: 589-601.
  • 9. Charruyer A, Ghadially R: Stem cells and tissue engineered skin. Skin Pharmacol. Physiol 2009; 22(2): 55-62.[Crossref][PubMed]
  • 10. Wood FM, Kolybaba ML, Allen P: The use of cultured epithelial autograft in the treatment of major burn wounds. Eleven years of clinical experience. Burns 2006; 32: 538-44.[Crossref][PubMed]
  • 11. Bargules L, Prat M, Leclerc T et al.: Present and future of cell therapy in burns. 2010 Pathol Biol. (Paris).
  • 12. Shakespeare PG: The role of skin substitutes in the treatment of burn injuries. Clin Dermatol 2005; 23: 413-18.[PubMed][Crossref]
  • 13. A tiyeh BS, Costagliola M: Cultured epithelial autograft (CEA) in burn treatment: three decades later. Burns 2006; 33: 405-13.
  • 14. Pham C, Greenwood J, Cleland H et al.: Bioengineered skin substitutes for the management of burns; a systematic review. Burns 2007; 33:; 946-57.[Crossref]
  • 15. Bai XZ, Hu DH, Zhang WF et al.: Effect of heat injured keratinocytes supernatant of biological behavior of fibroblasts. Zhonghua Shao Shang Za Zhi 2010; 26(2): 133-37.[PubMed]
  • 16. R aymund E, Horch E, Kopp J et al.: Tissue engineering of cultured skin substitutes. J Cell Mol Med 2005; 9(3): 592-608.[PubMed][Crossref]
  • 17. Gibbs S, van der Hoogenband HM, Kirtschig G et al.: Autologous full-thickness skin substitutes for healing chronic wounds. Brit J Dermat 2006; 155: 267-74.
  • 18. Metcalfe AD, Ferguson MW: Bioengineering skin using mechanisms of regeneration and repair. Biomaterials 2007; (28): 5100-13.[PubMed][Crossref]
  • 19. Klama-Baryła A, Kraut M, Labus W et al.: Application of platelet leukocyte-rich gel in in vitro cultured autologous keratinocyte grafts. J Orthopaed Trauma Surg and Related Res 2011; 2(22): 77-86.
  • 20. Goraszczuk ŁE, Bilińska B, Słomczyńska M: Rozdzielanie i identyfikacja komórek. Niektóre techniki specjalne z użyciem hodowli komórek. Hodowla komórek i tkanek. PWN, Warszawa 2004; 61-89.
  • 21. Harrison CA, Heaton MJ, Layton CM, MacNeil S: Use of an in vitro model of tissue engineered human skin to study keratinocyte attachment and migration in the process of reepithelialization. Wound Repair Regen 2006; 14: 203-09.[Crossref]
  • 22. Jones J, Currie l, Martin R: A guide to biological skin substitutes. Br J Plast Surg 2002; 55: 185-93.
  • 23. Schevchenko RV, James SL, James SE: A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface 2010; 7: 229-58.[Crossref]
  • 24. Steistraesser L, Ritting A, Gevers K et al.: A human full-skin system for interventional studies. J Plastic Surg 2009; 1: 27-35.
  • 25. Fishman JA, Patience C: Xenotransplantation; infectious risk revisited. Am J Transplant 2004; 4:1383-90.[PubMed][Crossref]
  • 26. Johnen C et al.: Culture of subconfluent human fibroblasts and keratinocytes using biodegradable transfer membranes. Burns 2007; 34: 655-63.
  • 27. Stokłosa G: Hodowla komórek i tkanek. PWN, Warszawa 2004; 122-28.
  • 28. E l Ghalbzouri A, Jonkman M, Dijkman R, Ponec M: Basement membrane reconstruction in human skin equivalents is regulated by fibroblasts and/or exogenously activated keratinocytes. J Invest Dermatol 2005; 124: 79-86.[Crossref][PubMed]
  • 29. R osso F, Marino G, Giordano A et al.: Smart materials as scaffolds for tissue engineering. J Cell Physiol 2005; 203: 465-70.
  • 30. Klama-Baryła A, Kraut M, Łabuś W i wsp.: Próby wykorzystania termosterowalnych podłoży do hodowli komórek skóry w postaci arkusza. XV Sympozjum „Oparzenia 2010”. Poznań, 27-29 maja 2010.
  • 31. Haslik W, Kamolz LP, Natschlager G et al.: First experience with the collagen-elastin matrix Matriderm as a dermal substitute in severe burn injuries of the hand. Burns 2007; 33: 364-68.[Crossref]
  • 32. Morimoto N, Saso Y, Tomihata K et al.: Viability and function of autologous and allogenic fibroblasts seeded in dermal substitutes after implantation. J Surg Res 2005; 125: 56-67.[Crossref]
  • 33. T ravia G, Palmisano PA, Cervelli V et al.: The use of fibroblast and keratinocyte cultures in burns treatment. Ann Burns Fire Disast 2003.XVI.
  • 34. R eed.R, Han L, Andrady A et al.: Composite tissue engineering on polycaprolactone nanofiber scaffolds. Ann Plastic Surg 2009; 62(5): 505-12.
  • 35. Ma PX: Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 2008; 60: 184-98.[PubMed][Crossref]
  • 36. Wickle, Lohmeyer JA, Liu S et al.: VEGF(165) and bFGF protein-based therapy in a slow release system to improve angiogenesis in a bioartificial dermal substitute in vitro and in vivo. Langenbecks Arch Surg 2007; 392: 305-14.
  • 37. Papini S, Cechetti D, Campani D et al.: Isolation and clonal analysis of human epidemal keratinocyte stem cells in long-term culture. Stem Cells 2003; 21: 481-94.[Crossref]
  • 38. V arghese VM, Raj V, Sreenivasan K, Kumary TV: In vitro cytocompatibility evaluation of a thermoresponsive nipaam-mma copolymeric surface using 1929 cells. J Mater Sci Mater Med 2010; 21: 1631-39.
  • 39. A ubrey Woodroof E: The search for an ideal temporary skin substitute: AWBAT. J Plastic Surg 2009; 9: 95-104.
  • 40. K im PJ, Dybowski KS, Steinberg JS: Feature: a closer look at bioengineered alternative tissues. Pediatry Today 2006; 19: 38-55.
  • 41. K umashiro Y, Yamato M, Okano T: Cell attachment- detachment control on temperature-responsive thin surface for novel tissue engineering. Ann Biomed Eng 2010; 38: 1977-88.[PubMed]
  • 42. Ward M, Georgiu T: Thermoresponsive polymers for biomedical applications. Polymers 2011; 3: 1215-21.[Crossref]
  • 43. N itschke M, Gramm S, Gotze T et al.: Thermoresponsive poly(nipaam-co-degma) substrates for gentle harvest of human corneal endothelial cell sheets. J Biomed Mater Res Part A. 2007; 80A: 1003-10.
  • 44. A ndreassi A, Bilenchi R, Biagioli M. D’Angelo C: Classification and pathophysiology of skin grafts. Clin Dermatol 2005; 22: 332-37.
  • 45. Hernon CA, Harrison CA. Thornton DJ, Mac- Neil S: Wound Repair Regen 2007; 15: 718-26.[PubMed]
  • 46. MacNeil S: Progress and opportunities for tissue-engineered skin. Nature 2007. 445; 874-880.
  • 47. Griffiths M, Ojeh N, Livingstone R et al.: Survival of Apligraf in acute human wounds. Tissue Eng 2004; 10: 1180-95.[PubMed][Crossref]
  • 48. Boyd M, Flasza M, Johnson PA et al.: Integration and persistence of an investigational human living skin equivalent (ICX-SKN) in human surgical wounds. Regen Med 2007; 2: 363-70.[PubMed][Crossref]
  • 49. Pape SA, Byrne PO: Safety and efficacy of TransCyte for the treatment of partial-thickness burns. J Burn Care Rehab 2000; 21: 390-92.
  • 50. Marston WA. Hanft J, Norwood P. Pollack R: The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers; results of a prospective randomised trail. Diabetes Care 2003; 26: 1701-05.[Crossref]
  • 51. Bechetoille N, Dezutter-Dambuyant C, Damour O et al.: Effects of solar ultraviolet radiation on engineered human skin equivalent containing both Langerhans cells and dermal dendritic cells. Tissue Eng 2007; 13(11): 2667-79.[PubMed][Crossref]
  • 52. T umbar T: Epithelial skin stem cells. Methods Enzymol 2006; 419: 73-99.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_pjs-2014-0037
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.