Chair and Department of General, Molecular, and Genetic Biology, Silesian Medical University in Katowice
References
1. T ruong ATN, Kowal-Vern A, Latenser A et al.: Comparison of dermal substitutes in wound healing utilizing a nude mouse model. J Burns and Wounds 2005;4: p. e4.
2. Castagnoli C, Fumagalli M, Alotto D et al.: Preparation and Characterization of a novel skin substitutes. J Biomed Biotechnol 2010; art. Id 840363; 112-33.
3. K ellouche S et al.: Tissue engineering for fullthickness burns; a dermal substitute from bench to bedside. Biochem Biophys Res Commun 2007; 363: 472-78.
4. Simpson DG: Dermal templates and woundhealing paradigm: the promise of tissue regeneration. Expert Rev Med Devices 2006; 3(4): 471-84.[Crossref]
5. Metcalfe AD, Ferguson MW: Tissue engineering of replacement skin; the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J Royal Soc Interface 2007; 4(14): 413-37.[Crossref]
6. K amolz LP, Lumeta et al.: Dermal replacements in General, Burn and Plastic Surgery. Tissue engineering in clinical practice. Springer Verlag, Vien 2013; 13-26, 27-42, 97-120.
7. A mable G, Meissner A: Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends Mol Med 2009; 15(2): 59-68.
8. I kada Y: Challenges in tissue engineering. J.R. Soc. Interface 2006; 3: 589-601.
9. Charruyer A, Ghadially R: Stem cells and tissue engineered skin. Skin Pharmacol. Physiol 2009; 22(2): 55-62.[Crossref][PubMed]
10. Wood FM, Kolybaba ML, Allen P: The use of cultured epithelial autograft in the treatment of major burn wounds. Eleven years of clinical experience. Burns 2006; 32: 538-44.[Crossref][PubMed]
11. Bargules L, Prat M, Leclerc T et al.: Present and future of cell therapy in burns. 2010 Pathol Biol. (Paris).
12. Shakespeare PG: The role of skin substitutes in the treatment of burn injuries. Clin Dermatol 2005; 23: 413-18.[PubMed][Crossref]
13. A tiyeh BS, Costagliola M: Cultured epithelial autograft (CEA) in burn treatment: three decades later. Burns 2006; 33: 405-13.
14. Pham C, Greenwood J, Cleland H et al.: Bioengineered skin substitutes for the management of burns; a systematic review. Burns 2007; 33:; 946-57.[Crossref]
15. Bai XZ, Hu DH, Zhang WF et al.: Effect of heat injured keratinocytes supernatant of biological behavior of fibroblasts. Zhonghua Shao Shang Za Zhi 2010; 26(2): 133-37.[PubMed]
16. R aymund E, Horch E, Kopp J et al.: Tissue engineering of cultured skin substitutes. J Cell Mol Med 2005; 9(3): 592-608.[PubMed][Crossref]
17. Gibbs S, van der Hoogenband HM, Kirtschig G et al.: Autologous full-thickness skin substitutes for healing chronic wounds. Brit J Dermat 2006; 155: 267-74.
18. Metcalfe AD, Ferguson MW: Bioengineering skin using mechanisms of regeneration and repair. Biomaterials 2007; (28): 5100-13.[PubMed][Crossref]
19. Klama-Baryła A, Kraut M, Labus W et al.: Application of platelet leukocyte-rich gel in in vitro cultured autologous keratinocyte grafts. J Orthopaed Trauma Surg and Related Res 2011; 2(22): 77-86.
20. Goraszczuk ŁE, Bilińska B, Słomczyńska M: Rozdzielanie i identyfikacja komórek. Niektóre techniki specjalne z użyciem hodowli komórek. Hodowla komórek i tkanek. PWN, Warszawa 2004; 61-89.
21. Harrison CA, Heaton MJ, Layton CM, MacNeil S: Use of an in vitro model of tissue engineered human skin to study keratinocyte attachment and migration in the process of reepithelialization. Wound Repair Regen 2006; 14: 203-09.[Crossref]
22. Jones J, Currie l, Martin R: A guide to biological skin substitutes. Br J Plast Surg 2002; 55: 185-93.
23. Schevchenko RV, James SL, James SE: A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface 2010; 7: 229-58.[Crossref]
24. Steistraesser L, Ritting A, Gevers K et al.: A human full-skin system for interventional studies. J Plastic Surg 2009; 1: 27-35.
26. Johnen C et al.: Culture of subconfluent human fibroblasts and keratinocytes using biodegradable transfer membranes. Burns 2007; 34: 655-63.
27. Stokłosa G: Hodowla komórek i tkanek. PWN, Warszawa 2004; 122-28.
28. E l Ghalbzouri A, Jonkman M, Dijkman R, Ponec M: Basement membrane reconstruction in human skin equivalents is regulated by fibroblasts and/or exogenously activated keratinocytes. J Invest Dermatol 2005; 124: 79-86.[Crossref][PubMed]
29. R osso F, Marino G, Giordano A et al.: Smart materials as scaffolds for tissue engineering. J Cell Physiol 2005; 203: 465-70.
30. Klama-Baryła A, Kraut M, Łabuś W i wsp.: Próby wykorzystania termosterowalnych podłoży do hodowli komórek skóry w postaci arkusza. XV Sympozjum „Oparzenia 2010”. Poznań, 27-29 maja 2010.
31. Haslik W, Kamolz LP, Natschlager G et al.: First experience with the collagen-elastin matrix Matriderm as a dermal substitute in severe burn injuries of the hand. Burns 2007; 33: 364-68.[Crossref]
32. Morimoto N, Saso Y, Tomihata K et al.: Viability and function of autologous and allogenic fibroblasts seeded in dermal substitutes after implantation. J Surg Res 2005; 125: 56-67.[Crossref]
33. T ravia G, Palmisano PA, Cervelli V et al.: The use of fibroblast and keratinocyte cultures in burns treatment. Ann Burns Fire Disast 2003.XVI.
34. R eed.R, Han L, Andrady A et al.: Composite tissue engineering on polycaprolactone nanofiber scaffolds. Ann Plastic Surg 2009; 62(5): 505-12.
35. Ma PX: Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 2008; 60: 184-98.[PubMed][Crossref]
36. Wickle, Lohmeyer JA, Liu S et al.: VEGF(165) and bFGF protein-based therapy in a slow release system to improve angiogenesis in a bioartificial dermal substitute in vitro and in vivo. Langenbecks Arch Surg 2007; 392: 305-14.
37. Papini S, Cechetti D, Campani D et al.: Isolation and clonal analysis of human epidemal keratinocyte stem cells in long-term culture. Stem Cells 2003; 21: 481-94.[Crossref]
38. V arghese VM, Raj V, Sreenivasan K, Kumary TV: In vitro cytocompatibility evaluation of a thermoresponsive nipaam-mma copolymeric surface using 1929 cells. J Mater Sci Mater Med 2010; 21: 1631-39.
39. A ubrey Woodroof E: The search for an ideal temporary skin substitute: AWBAT. J Plastic Surg 2009; 9: 95-104.
40. K im PJ, Dybowski KS, Steinberg JS: Feature: a closer look at bioengineered alternative tissues. Pediatry Today 2006; 19: 38-55.
41. K umashiro Y, Yamato M, Okano T: Cell attachment- detachment control on temperature-responsive thin surface for novel tissue engineering. Ann Biomed Eng 2010; 38: 1977-88.[PubMed]
42. Ward M, Georgiu T: Thermoresponsive polymers for biomedical applications. Polymers 2011; 3: 1215-21.[Crossref]
43. N itschke M, Gramm S, Gotze T et al.: Thermoresponsive poly(nipaam-co-degma) substrates for gentle harvest of human corneal endothelial cell sheets. J Biomed Mater Res Part A. 2007; 80A: 1003-10.
44. A ndreassi A, Bilenchi R, Biagioli M. D’Angelo C: Classification and pathophysiology of skin grafts. Clin Dermatol 2005; 22: 332-37.
45. Hernon CA, Harrison CA. Thornton DJ, Mac- Neil S: Wound Repair Regen 2007; 15: 718-26.[PubMed]
46. MacNeil S: Progress and opportunities for tissue-engineered skin. Nature 2007. 445; 874-880.
47. Griffiths M, Ojeh N, Livingstone R et al.: Survival of Apligraf in acute human wounds. Tissue Eng 2004; 10: 1180-95.[PubMed][Crossref]
48. Boyd M, Flasza M, Johnson PA et al.: Integration and persistence of an investigational human living skin equivalent (ICX-SKN) in human surgical wounds. Regen Med 2007; 2: 363-70.[PubMed][Crossref]
49. Pape SA, Byrne PO: Safety and efficacy of TransCyte for the treatment of partial-thickness burns. J Burn Care Rehab 2000; 21: 390-92.
50. Marston WA. Hanft J, Norwood P. Pollack R: The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers; results of a prospective randomised trail. Diabetes Care 2003; 26: 1701-05.[Crossref]
51. Bechetoille N, Dezutter-Dambuyant C, Damour O et al.: Effects of solar ultraviolet radiation on engineered human skin equivalent containing both Langerhans cells and dermal dendritic cells. Tissue Eng 2007; 13(11): 2667-79.[PubMed][Crossref]