Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2015 | 17 | 2 | 34-42

Article title

Synergistic extraction of Cr(VI) from Ni(II) and Co(II) by flat sheet supported liquid membranes using TIOA and TBP as carriers


Title variants

Languages of publication



In present study, the synergistic separation of Cr(VI) has been investigated from synthetic acidic solution containing Cr(VI), Co(II) and Ni(II) by fl at sheet supported liquid membrane (FSSLM) technique using triisooctylamine (TIOA) and tri-n-butyl phosphate (TBP) as carriers. The main goal of the study was based in the exploring of the synergistic effect of TBP on selective extraction of Cr(VI) in presence of Co(II) and Ni(II) ions. The various parameters related with membrane and aqueous solution properties were studied to identify the optimum extraction and stripping conditions of the Cr(VI) through FSSLM. In the optimum conditions, initial mass flux (J0) and separation factors (βCr/Co and βCr/Ni) were obtained as 1.49 x 10-05 (kg/m2.s), 382.2 and 725.3 respectively from aqueous H2SO4 media through Celgard 2500 (Celgard Inc., USA) polymer support. As a result, the considerable synergistic infl uence on selective transport of Cr(VI) through FSSLM using TIOA and TBP as carriers has been identifi ed.









Physical description


1 - 6 - 2015
9 - 6 - 2015


  • Cankiri Karatekin University, Department of Chemistry, Faculty of Science, 18100 Cankırı, Turkey
  • Pamukkale University, Department of Chemistry, Faculty of Education, 20017, Denizli-Turkey
  • Pamukkale University, Deparment of organic agriculture, Tavas Vacational High School, 20017, Denizli-Turkey


  • 1. Kumbasar, R.A. (2008). Studies on extraction of chromium (VI) from acidic solutions containing various metal ions by emulsion liquid membrane using Alamine 336 as extractant. J. Memb. Sci. 325 (1), 460-466. DOI: 10.1016/j. memsci.2008.08.009.[Crossref]
  • 2. Acosta, A.O., Illanes, C. & Marchese, J. (2009). Removal and recovery of Cr (III) with emulsion liquid membranes. Desalin. Wat. Treat. 7 (1-3), 18-24. DOI: 10.5004/dwt.2009.438.[Crossref]
  • 3. Luo, J.H., Li, J., Qi, Y.B. & Cao, Y.Q. (2013). Study on the removal of chromium(III) by solvent extraction. Desalin. Wat. Treat. 51 (10-12), 2130-2134. DOI: 10.1080/19443994.2012.735404.[Crossref][WoS]
  • 4. Koujalagi, P.S., Divekar, S.V., Kulkarni, R.M. & Nagarale, R.K. (2013). Kinetics, thermodynamic, and adsorption studies on removal of chromium(VI) using Tulsion A-27(MP) resin. Desalin. Wat. Treat. 51 (16-18), 3273-3283. DOI: 10.1080/19443994.2012.749049.[Crossref]
  • 5. Tor, A., Cengeloglu, Y., Ersoz, M. & Arslan, G. (2004). Transport of chromium through cation-exchange membranes by Donnan dialysis in the presence of some metals of different valences. Desalination 170 (2), 151-159. DOI: 10.1016/j. desal.2004.04.002.[Crossref]
  • 6. Vincent, T. & Guibal, E. (2000). Non-dispersive liquid extraction of Cr(VI) by TBP/Aliquat 336 using chitosan-made hollow fi ber. Sol. Extract. Ion Exchan. 18 (6), 1241-1260. DOI: 10.1080/07366290008934732.[Crossref]
  • 7. Kimbrough, D.E., Cohen, Y., Winer, A.M., Creelman, L. & Mabuni, C. (1999). A critical assessment of chromium in the environment. Crit. Rev. Env. Sci. Tec. 29 (1), 1-46. DOI: 10.1080/10643389991259164.[Crossref]
  • 8. Tabakci, M., Tabakci, B. & Beduk, A.D. (2012). Synthesis and application of an effi cient calix[4]arene-based anion receptor bearing imidazole groups for Cr(VI) anionic species. Tetrahedron 68 (22), 4182-4186. DOI: 10.1016/j.tet.2012.03.103.[Crossref]
  • 9. Guo, X., Zhang, F., Peng, Q., Xu, S., Lei, X., Evans, D. G. & Duan, X. (2011). Layered double hydroxide/eggshell membrane: An inorganic biocomposite membrane as an effi cient adsorbent for Cr(VI) removal. Chem. Eng. J. 166 (1), 81-87. DOI: 10.1016/j.cej.2010.10.010.[WoS][Crossref]
  • 10 . Fu, F.L., Han, W.J., Huang, C.J., Tang, B. & Hu, M. (2013). Removal of Cr(VI) from wastewater by supported nanoscale zero-valent iron on granular activated carbon. Desalin. Wat. Treat. 51 (13-15), 2680-2686. DOI: 10.1080/19443994.2012.749328.[Crossref][WoS]
  • 11 . Algarra, M., Jimenez, M.V., Rodriguez-Castellon, E., Jimenez-Lopez, A. & Jimenez-Jimenez, J. (2005). Heavy metals removal from electroplating wastewater by aminopropyl- -Si MCM-41. Chemosphere 59 (6), 779-786. DO I: 10.1016/j. chemosphere.2004.11.023.[Crossref]
  • 12. E.U.E.P. Office of Solid Waste Draft PBT Chemical List Office of Solid Waste and Emergency Response; EPA/530/D- -98/001A; Office of Solid Waste and Emergency Response: 1998.
  • 13 . Kumbasar, R.A. (2009). Separation and concentration of cobalt from zinc plant acidic thiocyanate leach solutions containing cobalt and nickel by an emulsion liquid membrane using triisooctylamine as carrier. J. Memb. Sci. 333 (1-2), 118-124. DOI: 10.1016/j.memsci.2009.02.004. [WoS][Crossref]
  • 14 . Kumbasar, R.A. (2010). Selective extraction of chromium (VI) from multicomponent acidic solutions by emulsion liquid membranes using tributhylphosphate as carrier. J. Hazard. Mater. 178 (1-3), 875-882. DOI: 10.1016/j.jhazmat.2010.02.019. [WoS][Crossref]
  • 15 . Chiha, M., Samar, M.H. & Hamdaoui, O. (2006). Extraction of chromium (VI) from sulphuric acid aqueous solutions by a liquid surfactant membrane (LSM). Desalination 194 (1-3), 69-80. DOI: 10.1016/j.desal.2005.10.025. [Crossref]
  • 16 . Pospiech, B. (2014). Selective recovery of cobalt(II) towards lithium(I) from chloride media by transport across polymer inclusion membrane with triisooctylamine. Pol. J. Chem. Tech. 16 (1), 15-20. DOI: 10.2478/pjct-2014-0003. [Crossref]
  • 17 . Almeida, M.I.G.S., Cattrall, R.W. & Kolev, S.D. (2012). Recent trends in extraction and transport of metal ions using polymer inclusion membranes (PIMs). J. Mem. Sci. 415-416, 9-23. DOI: 10.1016/j.memsci.2012.06.006. [Crossref]
  • 18 . de Juan, D., Meseguer, V. & Lozano, L.J. (1998). Chromium extraction with organic solvents Part 2. Extraction with TBP and with Primene 81R. Rev. Metal. Madrid. 34 (4), 319-327. DOI:10.3989/revmetalm.1998.v34.i4.798. [Crossref]
  • 19 . Hsu, H.T., Chen, S.S., Chang, W.S. & Li, C.W. (2013). Synergistic effects of chromium(VI) reduction/EDTA oxidization for PCB wastewater by photocatalysis combining ionic exchange membrane processes. Desalin. Wat. Treat. 51 (1-3), 495-502. DOI: 10.1080/19443994.2012.693651. [WoS][Crossref]
  • 20 . Nogueira, C.A. & Delmas, F. (1999). New fl owsheet for the recovery of cadmium, cobalt and nickel from spent Ni-Cd batteries by solvent extraction. Hydrometallurgy 52 (3), 267-287. DOI: 10.1016/S0304-386X(99)00026-2. [WoS][Crossref]
  • 21 . Li, N.N. (1988). Liquid Membrane - Past, Present and Future. Abstr. Pap. Am. Chem. S 195 51-IEC.
  • 22 . May, S.W. & Li, N.N. (1972). The immobilization of urease using liquid-surfactant membranes. Biochem. Bioph. Res. Commun. 47 (5), 1179-85. DO I: 10.1016/0006-291X(72)90959-X.
  • 23. Asher, W.J., Bovee, K.C., Frankenfeld, J.W., Hamilton, R.W., Henderson, L.W., Holtzapple, P.G. & Li, N.N. (1975). Liquid membrane system directed toward chronic uremia. Kid. Inter. Supp., (3), 409-12. DOI: 1057717.
  • 24 . Alguacil, F.J. & Villegas, M.A. (2002). Liquid membranes and the treatment of metal-bearing wastewaters. Rev Metal Madrid. 38 (1), 45-55. DOI: 10.3989/revmetalm.2002.v38.i1.383 [Crossref]
  • 25 . de Gyves, J. & Rodríguez de San Miguel, E. (1999). Metal Ion Separations by Supported Liquid Membranes. Industrial & Engineering Chemistry Research 38 (6), 2182-2202. DOI: 10.1021/ie980374p. [Crossref]
  • 26 . Kumbasar, R.A. (2008). Selective separation of chromium (VI) from acidic solutions containing various metal ions through emulsion liquid membrane using trioctylamine as extractant. Sep. Purif. Technol. 64 (1), 56-62. DOI: 10.1016/j. seppur.2008.08.005. [WoS][Crossref]
  • 27 . Sonmez, E., Sonmez, F., Kumbasar, R.A. & Eyupoglu, V. (2012). Synergistic and selective extraction of Cd2+ from acidic solution containing Cd2+, Co2+, Ni2+ by triisooctylamine (TIOA) and tributyl phosphate (TBP). J. Industr. Engineer. Chem. 18 (4), 1286-1292. DOI: 10.1016/j.jiec.2012.01.025. [Crossref]
  • 28 . Alguacil, F.J. (2002). Facilitated transport and separation of manganese and cobalt by a supported liquid membrane using DP-8R as a mobile carrier. Hydrometallurgy 65 (1), 9-14. [Crossref]
  • 29 . Kumbasar, R.A. & Tutkun, O. (2004). Separation and concentration of gallium from acidic leach solutions containing various metal ions by emulsion type of liquid membranes using TOPO as mobile carrier. Hydrometallurgy 75 (1-4), 111-121. DOI: 10.1016/j.hydromet.2004.07.009. [Crossref]
  • 30 . Chaudry, M.A., Malik, M.T. & Ali, A. (1990). Transport of Co(II) Ions through Di(2-Ethylhexyl) Phosphoric Acid-Ccl4 Supported Liquid Membranes. Separ. Sci. Technol. 25 (11-12), 1161-1174. DOI: 10.1080/01496399008051845. [Crossref]
  • 31 . Chiarizia, R. (1991). Stability of supported liquid membranes containing longchain aliphatic amines as carriers. J. Membr. Sci. 55 (1-2), 65-77. DOI: 10.1016/S0376-7388(00)82327-3. [Crossref]
  • 32 . Eyupoglu, V. & Tutkun, O. (2011). The Extraction of Cr(VI) by a Flat Sheet Supported Liquid Membrane Using Alamine 336 as a Carrier. Arab. J. Sci. Eng. 36 (4), 529-539. DOI: 10.1007/s13369-011-0057-5. [WoS][Crossref]
  • 33 . Surucu, A., Eyupoglu, V. & Tutkun, O. (2012). Selective separation of cobalt and nickel by fl at sheet supported liquid membrane using Alamine 300 as carrier. J. Ind. Eng. Chem. 18 (2), 629-634. DOI: 10.1016/j.jiec.2011.11.019. [Crossref]
  • 34 . Ali Kumbasar, R. (2009). Extraction of chromium (VI) from multicomponent acidic solutions by emulsion liquid membranes using TOPO as extractant. J. Hazard. Mater. 167 (1-3), 1141-1147. DOI: 10.1016/j.jhazmat.2009.01.113. [WoS][Crossref]
  • 35 . Gogia, S.K., Singh, D., Singh, O.V. & Tandon, S.N. (1987). Study on the Synergistic Extraction of Cobalt(Ii) with Lower Fatty-Acids in the Presence of Heterocyclic Amines and Some Metal-Ion Separations. Talanta 34 (3), 303-306. DOI: 10.1016/0039-9140(87)80036-X. [Crossref]
  • 36 . Ramakul, P., Supajaroon, T., Prapasawat, T., Pancharoen, U. & Lothongkum, A.W. (2009). Synergistic separation of yttrium ions in lanthanide series from rare earths mixture via hollow fi ber supported liquid membrane. J. Indust. Engineer. Chem. 15 (2), 224-228. DOI: 10.1016/j.jiec.2008.09.011. [Crossref]
  • 37 . Zhu, Z., Zhang, W., Pranolo, Y. & Cheng, C.Y. (2012). Separation and recovery of copper, nickel, cobalt and zinc in chloride solutions by synergistic solvent extraction. Hydrometallurgy 127-128, 1-7. DOI: 10.1016/j.hydromet.2012.07.001. [Crossref]
  • 38 . Campderros, M.E. & Marchese, J. (2001). Transport of niobium(V) through a TBP-Alamine 336 supported liquid membrane from chloride solutions. Hydrometallurgy 61 (2), 89-95. DOI: 10.1016/S0304-386X(01)00165-7. [Crossref]
  • 39 . Gaikwad, A.G. (2004). Synergetic transport of europium through a contained supported liquid membrane using trioctylamine and tributyl phosphate as carriers. Talanta 63 (4), 917-926. DOI: 10.1016/j.talanta.2003.12.041. [Crossref]
  • 40 . Zidi, C., Tayeb, R. & Dhahbi, M. (2011). Extraction of phenol from aqueous solutions by means of supported liquid membrane (MLS) containing tri-n-octyl phosphine oxide (TOPO). J. Hazard. Mater. 194 62-68. DOI: 10.1016/j. jhazmat.2011.07.071. [WoS][Crossref]
  • 41 . Y. Marcus, A.S.K. (1969). Ion Exchange and Solvent extraction of Metal Complexes. Interscience: New York. DOI: 10.1126/science.166.3911.1391-a. [Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.